Nothing
#' Print Method for the Package 'smoots'
#'
#'This function regulates how objects created by the package \code{smoots} are
#'printed.
#'
#'@param x an input object of class \code{smoots}.
#'@param ... included for compatibility; additional arguments will however
#'not affect the output.
#'
#'@export
#'
#'@return
#'None
#'
#'@author
#'\itemize{
#'\item Dominik Schulz (Research Assistant) (Department of Economics, Paderborn
#'University), \cr
#'Package Creator and Maintainer
#'}
# Print function for the R package 'smoots'-------------------------------
print.smoots <- function(x, ...) {
if (attr(x, "function") == "rollCast") {
cat("---------------------------", fill = TRUE)
cat("| Results of the backtest |", fill = TRUE)
cat("---------------------------", fill = TRUE)
cat(" ", fill = TRUE)
cat("Model: Semi-ARMA(", x[["model.par"]][["arma"]][[1]], ",",
x[["model.par"]][["arma"]][[2]], "), bandwidth: ",
sprintf("%.4f", x[["model.nonpar"]][["b0"]]), fill = TRUE,
sep = "")
if (x[["method"]] == "norm") {
method <- "normal"
} else {
method <- "bootstrap"
}
if (x[["np.fcast"]] == "lin") {
np.fcast <- "linear"
} else {
np.fcast <- "constant"
}
df1 <- data.frame(c(paste0(x[["alpha"]] * 100, "%"), method, np.fcast,
sum(x[["breach"]]), sprintf("%.4f", x[["MASE"]]),
sprintf("%.4f", x[["RMSSE"]])))
colnames(df1) <- ""
rownames(df1) <- c("Forecasting intervals:", "Method:", "Extrapolation:",
"Breaches:", "MASE:", "RMSSE:")
print.data.frame(df1, right = TRUE)
}
if (attr(x, "function") == "msmooth" | attr(x, "function") == "tsmooth") {
if (attr(x, "method") == "lpr") {
cat("-------------------------------------------------", fill = TRUE)
cat("| Results of the nonparametric trend estimation |", fill = TRUE)
cat("-------------------------------------------------", fill = TRUE)
cat("Method: Local Polynomial Regression", fill = TRUE)
result_vector <- c(as.character(x$n), x$niterations,
sprintf("%.4f", x$b0))
result_dataframe <- data.frame(result_vector)
rnames_dataframe <- c("Number of observations:",
"Iterations until convergence:", "Optimal bandwidth by IPI:")
colnames(result_dataframe) <- ""
rownames(result_dataframe) <- rnames_dataframe
print.data.frame(result_dataframe)
cat("", fill = TRUE)
cat("Iterative plug-in algorithm:", fill = TRUE)
cat("----------------------------")
ipi_vec <- c(x$bStart, x$p, x$mu, x$Mcf, x$bvc, x$InfR,
x$bb, x$cb)
ipi_df <- data.frame(ipi_vec)
rnames_ipi <- c("Bandwidth starting value:", "Order of polynomial:",
"Smoothness parameter:",
"Variance factor estimation:",
"Enlarged bandwidth (var. factor):",
"Inflation rate:", "Boundary method:",
"Boundary cut-off:")
colnames(ipi_df) <- ""
rownames(ipi_df) <- rnames_ipi
print.data.frame(ipi_df)
cat("", fill = TRUE)
cat("Components of the object ($):", fill = TRUE)
cat("-----------------------------")
abbreviations <- c("ye", "orig", "res", "ws", "b0", "cf0")
abbr <- data.frame(abbreviations)
colnames(abbr) <- ""
rownames(abbr) <- c("Estimates:", "Original series:", "Residuals:",
"Weights:", "Optimal bandwidth:", "Estimated variance factor:")
print.data.frame(abbr, right = FALSE)
cat(" ", fill = TRUE)
cat("Iterations:", fill = TRUE)
cat("-----------", fill = TRUE)
if (x$niterations < 10) {
it.names <- paste0("i = ", 1:x$niterations)
} else {
it.names <- paste0("i = ", sprintf("%2.f", 1:x$niterations))
}
print.data.frame(data.frame(bandwidth = sprintf("%.4f", x$iterations),
row.names = it.names))
} else if (attr(x, "method") == "kr") {
cat("-------------------------------------------------", fill = TRUE)
cat("| Results of the nonparametric trend estimation |", fill = TRUE)
cat("-------------------------------------------------", fill = TRUE)
cat("Method: Kernel Regression", fill = TRUE)
result_vector <- c(as.character(x$n), x$niterations,
sprintf("%.4f", x$b0))
result_dataframe <- data.frame(result_vector)
rnames_dataframe <- c("Number of observations:",
"Iterations until convergence:", "Optimal bandwidth by IPI:")
colnames(result_dataframe) <- ""
rownames(result_dataframe) <- rnames_dataframe
print.data.frame(result_dataframe)
cat("", fill = TRUE)
cat("Iterative plug-in algorithm:", fill = TRUE)
cat("----------------------------")
ipi_vec <- c(x$bStart, x$p, x$mu, x$Mcf, x$bvc, x$InfR,
x$bb, x$cb)
ipi_df <- data.frame(ipi_vec)
rnames_ipi <- c("Bandwidth starting value:", "Order of polynomial:",
"Smoothness parameter:",
"Variance factor estimation:",
"Enlarged bandwidth (var. factor):",
"Inflation rate:", "Boundary method:",
"Boundary cut-off:")
colnames(ipi_df) <- ""
rownames(ipi_df) <- rnames_ipi
print.data.frame(ipi_df, right = FALSE)
cat("", fill = TRUE)
cat("Components of the object ($):", fill = TRUE)
cat("-----------------------------")
abbreviations <- c("ye", "orig", "res", "b0", "cf0")
abbr <- data.frame(abbreviations)
colnames(abbr) <- ""
rownames(abbr) <- c("Estimates:", "Original series:", "Residuals:",
"Optimal bandwidth:", "Estimated variance factor:")
print.data.frame(abbr, right = FALSE)
cat(" ", fill = TRUE)
cat("Iterations:", fill = TRUE)
cat("-----------", fill = TRUE)
if (x$niterations < 10) {
it.names <- paste0("i = ", 1:x$niterations)
} else {
it.names <- paste0("i = ", sprintf("%2.f", 1:x$niterations))
}
print.data.frame(data.frame(bandwidth = sprintf("%.4f", x$iterations),
row.names = it.names))
}
} else if(attr(x, "function") == "dsmooth") {
cat("------------------------------------------------------",
fill = TRUE)
cat("| Results of the nonparametric derivative estimation |",
fill = TRUE)
cat("------------------------------------------------------",
fill = TRUE)
cat("Method: Local Polynomial Regression", fill = TRUE)
result_vector <- c(as.character(x[["v"]]), x$n, x$niterations,
sprintf("%.4f", x$b0))
result_dataframe <- data.frame(result_vector)
rnames_dataframe <- c("Order of derivative:", "Number of observations:",
"Iterations until convergence:", "Optimal bandwidth by IPI:")
colnames(result_dataframe) <- ""
rownames(result_dataframe) <- rnames_dataframe
print.data.frame(result_dataframe)
cat("", fill = TRUE)
cat("Iterative plug-in algorithm:", fill = TRUE)
cat("----------------------------")
ipi_vec <- c(x$bStart.p, x$pp, x$bStart, x$p, x$mu, x$InfR)
ipi_df <- data.frame(ipi_vec)
rnames_ipi <- c("Bandwidth starting value (var. factor):",
"Order of polynomial (var. factor):",
"Bandwidth starting value (IPI):",
"Order of polynomial (IPI):",
"Smoothness parameter:",
"Inflation rate:")
colnames(ipi_df) <- ""
rownames(ipi_df) <- rnames_ipi
print.data.frame(ipi_df)
cat("", fill = TRUE)
cat("Components of the object ($):", fill = TRUE)
cat("-----------------------------")
abbreviations <- c("ye", "orig", "ws", "b0", "cf0")
abbr <- data.frame(abbreviations)
colnames(abbr) <- ""
rownames(abbr) <- c("Estimates:", "Original series:", "Weights:",
"Optimal bandwidth:", "Estimated variance factor:")
print.data.frame(abbr, right = FALSE)
cat(" ", fill = TRUE)
cat("Iterations:", fill = TRUE)
cat("-----------", fill = TRUE)
if (x$niterations < 10) {
it.names <- paste0("i = ", 1:x$niterations)
} else {
it.names <- paste0("i = ", sprintf("%2.f", 1:x$niterations))
}
print.data.frame(data.frame(bandwidth = sprintf("%.4f", x$iterations),
row.names = it.names))
} else if (attr(x, "function") == "gsmooth" |
attr(x, "function") == "knsmooth") {
if (x$bb == 0) {
k_nearest <- "N"
} else if (x$bb == 1) {
k_nearest <- "Y"
}
cat("-------------------------------------------", fill = TRUE)
cat("| Results of the nonparametric estimation |", fill = TRUE)
cat("-------------------------------------------", fill = TRUE)
if (attr(x, "function") == "gsmooth") {
cat("Method: Local Polynomial Regression", fill = TRUE)
result_vec <- c(x$n, x$v, x$p, x$mu, x$b, k_nearest)
result_name <- c("Number of observations:", "Order of derivative:",
"Order of polynomial:", "Smoothness parameter:",
"Bandwidth:", "k-nearest:")
result_df <- data.frame(result_vec)
colnames(result_df) <- ""
rownames(result_df) <- result_name
print.data.frame(result_df)
cat("", fill = TRUE)
cat("Components of the object ($):", fill = TRUE)
cat("-----------------------------")
abbreviations <- c("ye", "orig", "res", "b", "ws")
abbr <- data.frame(abbreviations)
colnames(abbr) <- ""
rownames(abbr) <- c("Estimates:", "Original series:", "Residuals:",
"Bandwidth:", "Weighting system:")
print.data.frame(abbr, right = FALSE)
} else if (attr(x, "function") == "knsmooth") {
cat("Method: Kernel Regression", fill = TRUE)
result_vec <- c(x$n, 0, x$mu, x$b, k_nearest)
result_name <- c("Number of observations:", "Order of derivative:",
"Smoothness parameter:", "Bandwidth:", "k-nearest:")
result_df <- data.frame(result_vec)
colnames(result_df) <- ""
rownames(result_df) <- result_name
print.data.frame(result_df)
cat("", fill = TRUE)
cat("Components of the object ($):", fill = TRUE)
cat("-----------------------------")
abbreviations <- c("ye", "orig", "res", "b")
abbr <- data.frame(abbreviations)
colnames(abbr) <- ""
rownames(abbr) <- c("Estimates:", "Original series:", "Residuals:",
"Bandwidth:")
print.data.frame(abbr, right = FALSE)
}
} else if (attr(x, "function") == "confBounds") {
cat("-----------------------------------------------", fill = TRUE)
cat("| Results of the confidence bounds estimation |", fill = TRUE)
cat("-----------------------------------------------", fill = TRUE)
result <- c(as.character(x$n), x$v, sprintf("%.4f", x$b.ub))
result_df <- data.frame(result)
colnames(result_df) <- ""
rownames(result_df) <- c("Number of observations:", "Order of derivative:",
"Adjusted bandwidth:")
print.data.frame(result_df)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.