fInclin: Solar irradiance on an inclined surface

Description Usage Arguments Details Value Author(s) References See Also

View source: R/fInclin.R

Description

The solar irradiance incident on an inclined surface is calculated from the direct and diffuse irradiance on a horizontal surface, and from the evolution of the angles of the Sun and the surface. Moreover, the effect of the angle of incidence and dust on the PV module is included to obtain the effective irradiance.

This function is used by the calcGef function.

Usage

1
fInclin(compI, angGen, iS = 2, alb = 0.2, horizBright = TRUE, HCPV = FALSE)

Arguments

compI

A G0 object. It may be the result of calcG0.

angGen

A zoo object, including at least three variables named Beta, Alfa and cosTheta. It may be the result of fTheta.

iS

integer, degree of dirtiness. Its value must be included in the set (1,2,3,4). iS = 1 corresponds to a clean surface while iS = 4 is the choice for a dirty surface. Its default value is 2

alb

numeric, albedo reflection coefficient. Its default value is 0.2

horizBright

logical, if TRUE, the horizon brightness correction proposed by Reind et al. is used.

HCPV

logical, if TRUE the diffuse and albedo components of the effective irradiance are set to zero. HCPV is the acronym of High Concentration PV system.

Details

The solar irradiance incident on an inclined surface can be calculated from the direct and diffuse irradiance on a horizontal surface, and from the evolution of the angles of the Sun and the surface. The transformation of the direct radiation is straightforward since only geometric considerations are needed. However, the treatment of the diffuse irradiance is more complex since it involves the modelling of the atmosphere. There are several models for the estimation of diffuse irradiance on an inclined surface. The one which combines simplicity and acceptable results is the proposal of Hay and McKay. This model divides the diffuse component in isotropic and anisotropic whose values depends on a anisotropy index. On the other hand, the effective irradiance, the fraction of the incident irradiance that reaches the cells inside a PV module, is calculated with the losses due to the angle of incidence and dirtiness. This behaviour can be simulated with a model proposed by Martin and Ruiz requiring information about the angles of the surface and the level of dirtiness (iS) .

Value

A zoo object with these components:

Bo

Extra-atmospheric irradiance on the inclined surface (W/m²)

Bn

Direct normal irradiance (W/m²)

G, B, D, Di, Dc, R

Global, direct, diffuse (total, isotropic and anisotropic) and albedo irradiance incident on an inclined surface (W/m²)

Gef, Bef, Def, Dief, Dcef, Ref

Effective global, direct, diffuse (total, isotropic and anisotropic) and albedo irradiance incident on an inclined surface (W/m²)

FTb, FTd, FTr

Factor of angular losses for the direct, diffuse and albedo components

Author(s)

Oscar Perpiñán Lamigueiro.

References

See Also

fTheta, fCompI, calcGef.


solaR documentation built on Oct. 19, 2021, 9:06 a.m.