Spatial Causality Test (SCT)

Methodological Background

Let us begin by defining two spatial cross-sectional series ${x_s}{s \in S}$ and ${y_s}{s \in S}$, where $S$ represents the study area.

We use:

$$ \mathcal{X}_W = { W_i x \mid W_i \in \mathcal{W}(x, y) } $$

$$ \mathcal{Y}_W = { W_i y \mid W_i \in \mathcal{W}(x, y) } $$

to denote the sets of spatial lags of $x$ and $y$ given by all the weighting matrices in $\mathcal{W}(x, y)$(that is the set of spatial dependence structures between $x$ and $y$).

We say that ${x_s}{s \in S}$ does not cause ${y_s}{s \in S}$ under the spatial structures $\mathcal{X}_W$ and $\mathcal{Y}_W$ if

$$ h_{y |\mathcal{Y}W}(m) = h{y | \mathcal{Y}_W,\mathcal{X}_W}(m) $$ A unilateral non-parametric test can be applied to assess the spatial causality via the following null hypothesis:

$$ H_0 : {x_s}{s \in S} \text{ does not cause } {y_s}{s \in S} \text{ under the spatial structures } \mathcal{X}_W \text{ and } \mathcal{Y}_W, $$

with the following statistic:

$$ \hat{\delta}(\mathcal{Y}W, \mathcal{X}_W) = \hat{h}{y |\mathcal{Y}W}(m) - \hat{h}{y | \mathcal{Y}_W,\mathcal{X}_W}(m) $$

where $\hat{h}_*(m)$ is the estimated conditional symbolic entropy using Shannon’s entropy with $m-1$ nearest neighbors. The alternative is that the null hypothesis of is not true.

If $\mathcal{X}_W$ does not contain extra information about $y$ then $\hat{\delta}(\mathcal{Y}_W, \mathcal{X}_W) = 0$, otherwise, $ \hat{\delta}(\mathcal{Y}_W, \mathcal{X}_W) > 0$.

$h_{y |\mathcal{Y}W}(m)$ measures the uncertainty of the distribution of symbols of $y$, conditional to the symbols of its spatial lag, $ \mathcal{Y}_W$. Moreover, $h{y | \mathcal{Y}_W,\mathcal{X}_W}(m)$ measures the uncertainty of the distribution of symbols of $y$, conditional to the symbols of the spatial lags of $y$, $\mathcal{Y}_W$, and of $x$, $ \mathcal{X}_W$. If the second variable, $x$, indeed causes the first one then there should be a significant decrease in the entropy, and the statistic $\hat{\delta}(\mathcal{Y}_W, \mathcal{X}_W)$ will take on high positive values. If there is only a spatial correlation, but not causation, the difference between both entropies will be small. The statistical significance of $\hat{\delta}(\mathcal{Y}_W, \mathcal{X}_W)$ is assessed using spatial block bootstrap.

Usage examples

An example of spatial lattice data

Load the spEDM package and the columbus OH dataset:

library(spEDM)

columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
columbus
## Simple feature collection with 49 features and 6 fields
## Geometry type: POLYGON
## Dimension:     XY
## Bounding box:  xmin: 5.874907 ymin: 10.78863 xmax: 11.28742 ymax: 14.74245
## Projected CRS: Undefined Cartesian SRS with unknown unit
## # A tibble: 49 × 7
##    hoval   inc  crime  open plumb discbd                                    geom
##    <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl>                               <POLYGON>
##  1  80.5 19.5  15.7   2.85  0.217   5.03 ((8.624129 14.23698, 8.5597 14.74245, …
##  2  44.6 21.2  18.8   5.30  0.321   4.27 ((8.25279 14.23694, 8.282758 14.22994,…
##  3  26.4 16.0  30.6   4.53  0.374   3.89 ((8.653305 14.00809, 8.81814 14.00205,…
##  4  33.2  4.48 32.4   0.394 1.19    3.7  ((8.459499 13.82035, 8.473408 13.83227…
##  5  23.2 11.3  50.7   0.406 0.625   2.83 ((8.685274 13.63952, 8.677577 13.72221…
##  6  28.8 16.0  26.1   0.563 0.254   3.78 ((9.401384 13.5504, 9.434411 13.69427,…
##  7  75    8.44  0.178 0     2.40    2.74 ((8.037741 13.60752, 8.062716 13.60452…
##  8  37.1 11.3  38.4   3.48  2.74    2.89 ((8.247527 13.58651, 8.2795 13.5965, 8…
##  9  52.6 17.6  30.5   0.527 0.891   3.17 ((9.333297 13.27242, 9.671007 13.27361…
## 10  96.4 13.6  34.0   1.55  0.558   4.33 ((10.08251 13.03377, 10.0925 13.05275,…
## # ℹ 39 more rows

Detect spatial causality among the variables inc, crime, and hoval :

# house value and crime
sc.test(columbus, "hoval", "crime", k = 15)
## spatial causality test
## hoval -> crime: statistic = 1.114, p value = 0.574
## crime -> hoval: statistic = 1.555, p value = 0

# household income and crime
sc.test(columbus, "inc", "crime", k = 15)
## spatial causality test
## inc -> crime: statistic = 0.739, p value = 0.975
## crime -> inc: statistic = 0.946, p value = 0.762

# household income and house value
sc.test(columbus, "inc", "hoval", k = 15)
## spatial causality test
## inc -> hoval: statistic = 1.211, p value = 0.311
## hoval -> inc: statistic = 0.992, p value = 0.712

An example of spatial grid data

Load the spEDM package and its farmland NPP data:

library(spEDM)

npp = terra::rast(system.file("case/npp.tif", package = "spEDM"))
# To save the computation time, we will aggregate the data by 3 times
npp = terra::aggregate(npp, fact = 3, na.rm = TRUE)
npp
## class       : SpatRaster 
## size        : 135, 161, 5  (nrow, ncol, nlyr)
## resolution  : 30000, 30000  (x, y)
## extent      : -2625763, 2204237, 1867078, 5917078  (xmin, xmax, ymin, ymax)
## coord. ref. : CGCS2000_Albers 
## source(s)   : memory
## names       :      npp,        pre,      tem,      elev,         hfp 
## min values  :   187.50,   390.3351, -47.8194, -110.1494,  0.04434316 
## max values  : 15381.89, 23734.5330, 262.8576, 5217.6431, 42.68803711

Detect spatial causality among the variables pre, tem, and npp :

# precipitation and npp
sc.test(npp,"pre","npp",k = 30)
## spatial causality test
## pre -> npp: statistic = 0.227, p value = 0
## npp -> pre: statistic = 0.16, p value = 0

# temperature and npp
sc.test(npp,"tem","npp",k = 30)
## spatial causality test
## tem -> npp: statistic = 0.168, p value = 0
## npp -> tem: statistic = 0.169, p value = 0

# precipitation and temperature
sc.test(npp,"pre","tem",k = 30)
## spatial causality test
## pre -> tem: statistic = 0.19, p value = 0
## tem -> pre: statistic = 0.147, p value = 0


Try the spEDM package in your browser

Any scripts or data that you put into this service are public.

spEDM documentation built on June 25, 2025, 9:07 a.m.