gccm | R Documentation |
geographical convergent cross mapping
## S4 method for signature 'sf'
gccm(
data,
cause,
effect,
libsizes,
E = 3,
tau = 1,
k = E + 2,
theta = 1,
algorithm = "simplex",
lib = NULL,
pred = NULL,
nb = NULL,
threads = detectThreads(),
parallel.level = "low",
bidirectional = TRUE,
trend.rm = TRUE,
progressbar = TRUE
)
## S4 method for signature 'SpatRaster'
gccm(
data,
cause,
effect,
libsizes,
E = 3,
tau = 1,
k = E + 2,
theta = 1,
algorithm = "simplex",
lib = NULL,
pred = NULL,
threads = detectThreads(),
parallel.level = "low",
bidirectional = TRUE,
trend.rm = TRUE,
progressbar = TRUE
)
data |
The observation data. |
cause |
Name of causal variable. |
effect |
Name of effect variable. |
libsizes |
A vector of library sizes to use. |
E |
(optional) Dimensions of the embedding. |
tau |
(optional) Step of spatial lags. |
k |
(optional) Number of nearest neighbors to use for prediction. |
theta |
(optional) Weighting parameter for distances, useful when |
algorithm |
(optional) Algorithm used for prediction. |
lib |
(optional) Libraries indices. |
pred |
(optional) Predictions indices. |
nb |
(optional) The neighbours list. |
threads |
(optional) Number of threads. |
parallel.level |
(optional) Level of parallelism, |
bidirectional |
(optional) whether to identify bidirectional causal associations. |
trend.rm |
(optional) Whether to remove the linear trend. |
progressbar |
(optional) whether to print the progress bar. |
A list
xmap
cross mapping prediction results
varname
names of causal and effect variable
bidirectional
whether to identify bidirectional causal associations
columbus = sf::read_sf(system.file("shapes/columbus.gpkg", package="spData"))
g = gccm(columbus,"HOVAL","CRIME",libsizes = seq(5,45,5),E = 6)
g
plot(g, ylimits = c(0,0.85))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.