| ic | R Documentation |
optimal parameter search for intersection cardinality
## S4 method for signature 'sf'
ic(
data,
column,
target,
E = 2:10,
k = E + 2,
tau = 1,
style = 1,
lib = NULL,
pred = NULL,
dist.metric = "L2",
threads = detectThreads(),
detrend = FALSE,
nb = NULL
)
## S4 method for signature 'SpatRaster'
ic(
data,
column,
target,
E = 2:10,
k = E + 2,
tau = 1,
style = 1,
lib = NULL,
pred = NULL,
dist.metric = "L2",
threads = detectThreads(),
detrend = FALSE,
grid.coord = TRUE
)
data |
observation data. |
column |
name of library variable. |
target |
name of target variable. |
E |
(optional) embedding dimensions. |
k |
(optional) number of nearest neighbors used. |
tau |
(optional) step of spatial lags. |
style |
(optional) embedding style ( |
lib |
(optional) libraries indices (input needed: |
pred |
(optional) predictions indices (input requirement same as |
dist.metric |
(optional) distance metric ( |
threads |
(optional) number of threads to use. |
detrend |
(optional) whether to remove the linear trend. |
nb |
(optional) neighbours list. |
grid.coord |
(optional) whether to detrend using cell center coordinates ( |
A list
xmapcross mapping performance
varnamename of target variable
methodmethod of cross mapping
Tao, P., Wang, Q., Shi, J., Hao, X., Liu, X., Min, B., Zhang, Y., Li, C., Cui, H., Chen, L., 2023. Detecting dynamical causality by intersection cardinal concavity. Fundamental Research.
columbus = sf::read_sf(system.file("case/columbus.gpkg",package="spEDM"))
ic(columbus,"hoval","crime",E = 7,k = 15:25)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.