smap | R Documentation |
smap forecast
## S4 method for signature 'sf'
smap(
data,
column,
target,
lib = NULL,
pred = NULL,
E = 3,
tau = 1,
k = E + 2,
theta = c(0, 1e-04, 3e-04, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3,
4, 6, 8),
nb = NULL,
threads = detectThreads(),
detrend = TRUE
)
## S4 method for signature 'SpatRaster'
smap(
data,
column,
target,
lib = NULL,
pred = NULL,
E = 3,
tau = 1,
k = E + 2,
theta = c(0, 1e-04, 3e-04, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3,
4, 6, 8),
threads = detectThreads(),
detrend = TRUE
)
data |
observation data. |
column |
name of library variable. |
target |
name of target variable. |
lib |
(optional) libraries indices. |
pred |
(optional) predictions indices. |
E |
(optional) embedding dimensions. |
tau |
(optional) step of spatial lags. |
k |
(optional) number of nearest neighbors used. |
theta |
(optional) weighting parameter for distances. |
nb |
(optional) neighbours list. |
threads |
(optional) number of threads to use. |
detrend |
(optional) whether to remove the linear trend. |
A list
xmap
forecast performance
varname
name of target variable
method
method of cross mapping
Sugihara G. 1994. Nonlinear forecasting for the classification of natural time series. Philosophical Transactions: Physical Sciences and Engineering, 348 (1688):477-495.
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
smap(columbus,"inc","crime",E = 5,k = 6)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.