multiview | R Documentation |
multiview embedding forecast
## S4 method for signature 'sf'
multiview(
data,
column,
target,
nvar,
lib = NULL,
pred = NULL,
E = 3,
tau = 1,
k = E + 2,
nb = NULL,
top = NULL,
threads = detectThreads(),
detrend = TRUE
)
## S4 method for signature 'SpatRaster'
multiview(
data,
column,
target,
nvar,
lib = NULL,
pred = NULL,
E = 3,
tau = 1,
k = E + 2,
top = NULL,
threads = detectThreads(),
detrend = TRUE
)
data |
observation data. |
column |
name of library variable. |
target |
name of target variable. |
nvar |
number of variable combinations. |
lib |
(optional) libraries indices. |
pred |
(optional) predictions indices. |
E |
(optional) embedding dimensions. |
tau |
(optional) step of spatial lags. |
k |
(optional) number of nearest neighbors used. |
nb |
(optional) neighbours list. |
top |
(optional) number of reconstructions used in MVE forecast. |
threads |
(optional) number of threads to use. |
detrend |
(optional) whether to remove the linear trend. |
A vector (when input is sf object) or matrix
Ye H., and G. Sugihara, 2016. Information leverage in interconnected ecosystems: Overcoming the curse of dimensionality. Science 353:922-925.
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
multiview(columbus,
column = c("inc","crime","open","plumb","discbd"),
target = "hoval", nvar = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.