Nothing
#
#
# setcov.R
#
# $Revision: 1.17 $ $Date: 2024/02/04 08:04:51 $
#
# Compute the set covariance function of a window
# or the (noncentred) spatial covariance function of an image
#
setcov <- function(W, V=W, ...) {
W <- as.owin(W)
# pixel approximation
mW <- as.mask(W, ...)
Z <- as.im(mW, na.replace=0)
if(missing(V))
return(imcov(Z))
# cross-covariance
V <- as.owin(V)
mV <- as.mask(V, ...)
Z2 <- as.im(mV, na.replace=0)
imcov(Z, Z2)
}
imcov <- function(X, Y=X) {
if(missing(Y)) Y <- NULL
convolve.im(X, Y, reflectX = FALSE, reflectY=TRUE)
}
convolve.im <- function(X, Y=X, ..., reflectX=FALSE, reflectY=FALSE) {
stopifnot(is.im(X))
have.Y <- !missing(Y) && !is.null(Y)
crosscov <- have.Y || reflectX || reflectY
trap.extra.arguments(..., .Context="In convolve.im")
#' Check whether Fastest Fourier Transform in the West is available
west <- fftwAvailable()
#'
if(have.Y) {
# cross-covariance
stopifnot(is.im(Y))
Xbox <- as.rectangle(X)
Ybox <- as.rectangle(Y)
# first shift images to common midpoint, to reduce storage
Xmid <- centroid.owin(Xbox)
Ymid <- centroid.owin(Ybox)
svec <- as.numeric(Xmid) - as.numeric(Ymid)
Y <- shift(Y, svec)
# ensure images are compatible
XY <- harmonise.im(X=X, Y=Y)
X <- XY$X
Y <- XY$Y
} else {
# Y is missing or NULL
Y <- X
Xbox <- Ybox <- as.rectangle(X)
}
M <- X$v
M[is.na(M)] <- 0
xstep <- X$xstep
ystep <- X$ystep
# pad with zeroes
nr <- nrow(M)
nc <- ncol(M)
Mpad <- matrix(0, ncol=2*nc, nrow=2*nr)
Mpad[1:nr, 1:nc] <- M
lengthMpad <- 4 * nc * nr
fM <- fft2D(Mpad, west=west)
if(!crosscov) {
# compute convolution square
G <- fft2D(fM^2, inverse=TRUE, west=west)/lengthMpad
} else {
# compute set cross-covariance or convolution by FFT
N <- Y$v
N[is.na(N)] <- 0
Npad <- matrix(0, ncol=2*nc, nrow=2*nr)
Npad[1:nr, 1:nc] <- N
fN <- fft2D(Npad, west=west)
if(reflectY) fN <- Conj(fN)
if(reflectX) fM <- Conj(fM)
G <- fft2D(fM * fN, inverse=TRUE, west=west)/lengthMpad
}
# cat(paste("maximum imaginary part=", max(Im(G)), "\n"))
G <- Mod(G) * xstep * ystep
if(reflectX != reflectY) {
# Currently G[i,j] corresponds to a vector shift of
# dy = (i-1) mod nr, dx = (j-1) mod nc.
# Rearrange this periodic function so that
# the origin of translations (0,0) is at matrix position (nr,nc)
# NB this introduces an extra row and column
G <- G[ ((-nr):nr) %% (2 * nr) + 1, (-nc):nc %% (2*nc) + 1]
}
# Determine spatial domain of full raster image
XB <- as.rectangle(X)
YB <- as.rectangle(Y)
# undo shift
if(have.Y) YB <- shift(YB, -svec)
# reflect
if(reflectX) XB <- reflect(XB)
if(reflectY) YB <- reflect(YB)
# Minkowski sum of covering boxes
xran <- XB$xrange + YB$xrange
yran <- XB$yrange + YB$yrange
# Declare spatial domain
out <- im(G, xrange = xran, yrange=yran)
if(crosscov) {
# restrict to actual spatial domain of function
if(reflectX) Xbox <- reflect(Xbox)
if(reflectY) Ybox <- reflect(Ybox)
# Minkowski sum
xran <- Xbox$xrange + Ybox$xrange
yran <- Xbox$yrange + Ybox$yrange
XYbox <- owinInternalRect(xran, yran)
out <- out[XYbox, rescue=TRUE]
}
unitname(out) <- unitname(X)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.