Nothing
#
#
# pairsat.family.S
#
# $Revision: 1.46 $ $Date: 2022/11/03 11:08:33 $
#
# The saturated pairwise interaction family of point process models
#
# (an extension of Geyer's saturation process to all pairwise interactions)
#
# pairsat.family: object of class 'isf'
# defining saturated pairwise interaction
#
#
# -------------------------------------------------------------------
#
pairsat.family <-
list(
name = "saturated pairwise",
order = Inf,
print = function(self) {
cat("Saturated pairwise interaction family\n")
},
eval = function(X,U,EqualPairs,pairpot,potpars,correction,
..., Reach=NULL,
precomputed=NULL, savecomputed=FALSE,
halfway=FALSE) {
#
# This is the eval function for the `pairsat' family.
#
# This internal function is not meant to be called by the user.
# It is called by mpl.prepare() during execution of ppm().
#
# The eval functions perform all the manipulations that are common to
# a given class of interactions.
#
# For the `pairsat' family of pairwise-interaction processes,
# this eval function computes the distances between points,
# invokes 'pairpot' to evaluate the potential between each pair of points,
# applies edge corrections, and then sums the pair potential terms
# applying the saturation threshold.
#
# ARGUMENTS:
# All 'eval' functions have the following arguments
# which are called in sequence (without formal names)
# by mpl.prepare():
#
# X data point pattern 'ppp' object
# U points at which to evaluate potential list(x,y) suffices
# EqualPairs two-column matrix of indices i, j such that X[i] == U[j]
# (or NULL, meaning all comparisons are FALSE)
# pot potential function
# potpars auxiliary parameters for pot list(......)
# correction edge correction type (string)
#
# VALUE:
# All `eval' functions must return a
# matrix of values of the total potential
# induced by the pattern X at each location given in U.
# The rows of this matrix correspond to the rows of U (the sample points);
# the k columns are the coordinates of the k-dimensional potential.
#
########################################################################
#
# POTENTIAL:
# The pair potential function 'pairpot' will be called as
# pairpot(M, potpars) where M is a matrix of interpoint distances.
# It must return a matrix with the same dimensions as M
# or an array with its first two dimensions the same as the dimensions of M.
#
# NOTE:
# Note the Geyer saturation threshold must be given in 'potpars$sat'
##########################################################################
# coercion should be unnecessary, but this is useful for debugging
X <- as.ppp(X)
U <- as.ppp(U, X$window) # i.e. X$window is DEFAULT window
# saturation parameter(s)
saturate <- potpars$sat
# interaction distance of corresponding pairwise interaction
PairReach <- if(!is.null(Reach) && is.finite(Reach)) Reach/2 else NULL
if(is.null(saturate)) {
# pairwise interaction
V <- pairwise.family$eval(X, U, EqualPairs,
pairpot, potpars, correction, ...,
Reach=PairReach,
precomputed=precomputed,
savecomputed=savecomputed)
return(V)
}
# first ensure all data points are included in the quadrature points
nX <- npoints(X)
nU <- npoints(U)
Xseq <- seq_len(nX)
if(length(EqualPairs) == 0) {
# no data points currently included
missingdata <- rep.int(TRUE, nX)
} else {
Xused <- EqualPairs[,1]
missingdata <- !(Xseq %in% Xused)
}
somemissing <- any(missingdata)
if(somemissing) {
# add the missing data points
originalrows <- seq_len(nU)
nmiss <- sum(missingdata)
U <- superimpose(U, X[missingdata], W=X$window, check=FALSE)
# correspondingly augment the list of equal pairs
newXindex <- Xseq[missingdata]
newUindex <- nU + seq_len(nmiss)
EqualPairs <- rbind(EqualPairs, cbind(newXindex, newUindex))
nU <- nU + nmiss
}
# compute the pair potentials POT and the unsaturated potential sums V
V <- pairwise.family$eval(X, U, EqualPairs, pairpot, potpars, correction,
..., Reach=PairReach)
POT <- attr(V, "POT")
computed <- attr(V, "computed") # could be NULL
#
# V is a matrix with rows = quadrature points,
# columns = coordinates of potential
# POT is an array with rows = data points
# columns = quadrature points
# planes = coordinates of potential
#################################################################
################## saturation part ##############################
#################################################################
# check dimensions and ensure 'saturate' is a vector
ns <- length(saturate)
np <- ncol(V)
if(ns == 1 && np > 1)
saturate <- rep.int(saturate, np)
else if(ns != np)
stop("Length of vector of saturation parameters is incompatible with the pair potential", call.=FALSE)
# replicate as a matrix and as an array
saturate2 <- array(saturate[slice.index(V, 2)], dim=dim(V))
saturate3 <- array(saturate[slice.index(POT, 3)], dim=dim(POT))
#
# (a) compute SATURATED potential sums
V.sat <- pmin(V, saturate2)
if(halfway)
return(V.sat)
#
# (b) compute effect of addition/deletion of dummy/data point j
# on the UNSATURATED potential sum of each data point i
#
# Identify data points
is.data <- seq_len(npoints(U)) %in% EqualPairs[,2] # logical vector corresp. to rows of V
# Extract potential sums for data points only
V.data <- V[is.data, , drop=FALSE]
# replicate them so that V.dat.rep[i,j,k] = V.data[i, k]
V.dat.rep <- aperm(array(V.data, dim=c(dim(V.data), U$n)), c(1,3,2))
# make a logical array col.is.data[i,j,k] = is.data[j]
col.is.data <- array(is.data[slice.index(POT, 2)], dim=dim(POT))
# compute value of unsaturated potential sum for each data point i
# obtained after addition/deletion of each dummy/data point j
if(!(correction %in% c("isotropic", "Ripley"))) {
dV <- ifelseNegPos(col.is.data, POT)
## equivalent to ifelse(col.is.data, -POT, POT)
} else {
## Weighted potential is not exactly symmetric
dV <- POT
dV[col.is.data] <- - aperm(POT[ , is.data, , drop=FALSE], c(2,1,3))
}
V.after <- V.dat.rep + dV
#
#
# (c) difference of SATURATED potential sums for each data point i
# before & after increment/decrement of each dummy/data point j
#
# saturated values after increment/decrement
V.after.sat <- array(pmin.int(saturate3, V.after), dim=dim(V.after))
# saturated values before
V.dat.rep.sat <- array(pmin.int(saturate3, V.dat.rep), dim=dim(V.dat.rep))
# difference
V.delta <- V.after.sat - V.dat.rep.sat
V.delta <- ifelseNegPos(col.is.data, V.delta)
#
# (d) Sum (c) over all data points i
V.delta.sum <- apply(V.delta, c(2,3), sum)
#
# (e) Result
V <- V.sat + V.delta.sum
##########################################
# remove rows corresponding to supplementary points
if(somemissing)
V <- V[originalrows, , drop=FALSE]
### tack on the saved computations from pairwise.family$eval
if(savecomputed)
attr(V, "computed") <- computed
return(V)
}, ######### end of function $eval
suffstat = function(model, X=NULL, callstring="pairsat.family$suffstat") {
# for saturated pairwise models only (possibly nonstationary)
verifyclass(model, "ppm")
if(!identical(model$interaction$family$name,"saturated pairwise"))
stop("Model is not a saturated pairwise interaction process")
if(is.null(X)) {
X <- data.ppm(model)
modelX <- model
} else {
verifyclass(X, "ppp")
modelX <- update(model, X, improve.type="none")
}
# determine which data points contribute to pseudolikelihood
contribute <- getppmdatasubset(modelX)
Empty <- X[integer(0)]
mom <- partialModelMatrix(X, Empty, model, "suffstat", halfway=TRUE)
# halfway=TRUE is passed to pairsat.family$eval
# and yields matrix of saturated potential sums
# take only those terms that contribute to the pseudolikelihood
mom <- mom[contribute, , drop=FALSE]
result <- apply(mom, 2, sum)
return(result)
} ######### end of function $suffstat
) ######### end of list
class(pairsat.family) <- "isf"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.