Nothing
context("operators")
library(patrick)
library(testthat)
library(spectralGraphTopology)
set.seed(423)
# The L operator should return a symmetric positive semi-definite matrix
# with non-positive off diagonal elements and nonnegative
# diagonal elements
L_constraints <- function(Lw) {
expect_true(isSymmetric.matrix(Lw))
expect_true(all(diag(Lw) > 0))
Lw_off <- Lw - diag(diag(Lw))
expect_true(all(Lw_off <= 0))
expect_true(all(colSums(Lw) == 0))
expect_true(all(rowSums(Lw) == 0))
eigen_values <- eigen(Lw, symmetric = TRUE, only.values = TRUE)
# set to zero eigen values that are no bigger than 1e-12 in magnitude
mask <- abs(eigen_values$values) < 1e-12
eigen_values$values[mask] <- 0
# verify that eigen values are nonnegative
expect_true(all(eigen_values$values >= 0))
}
LOp <- function(w) {
k <- length(w)
n <- as.integer(.5 * (1 + sqrt(1 + 8 * k)))
Lw <- matrix(0, n, n)
for (i in ((n-1):1)) {
j <- n - i
Lw[i, (i+1):n] <- -tail(w[1:k], j)
k <- k - j
}
Lw <- Lw + t(Lw)
Lw <- Lw - diag(colSums(Lw))
return(Lw)
}
LStarOp <- function(Y) {
N <- ncol(Y)
k <- as.integer(N * (N - 1) / 2)
LStarY <- array(0., k)
j <- 1
l <- 2
for (i in 1:k) {
LStarY[i] <- Y[j, j] + Y[l, l] - Y[l, j] - Y[j, l]
if (l == N) {
j <- j + 1
l <- j + 1
} else {
l <- l + 1
}
}
return(LStarY)
}
LStarOpImpl <- function(Y) {
n <- ncol(Y)
k <- as.integer(n * (n - 1) / 2)
LStarY <- array(0., k)
for (i in 1:k) {
w <- array(0., k)
w[i] <- 1.
Lw <- LOp(w)
LStarY[i] <- sum(diag(t(Y) %*% Lw))
}
return(LStarY)
}
test_that("inverse of the L operator works", {
w <- runif(10)
expect_true(all(w == Linv(L(w))))
})
test_that("inverse of the A operator works", {
w <- runif(10)
expect_true(all(w == Ainv(A(w))))
})
with_parameters_test_that("L operator works in simple, manually verifiable cases", {
Lw <- L(w)
L_constraints(Lw)
expect_true(all(Lw == answer))
},
cases(
list(w = c(1, 2, 3, 4, 5, 6), answer = matrix(c(6, -1, -2, -3,
-1, 10, -4, -5,
-2, -4, 12, -6,
-3, -5, -6, 14), nrow=4)),
list(w = c(1, 2, 3), answer = matrix(c(3, -1, -2,
-1, 4, -3,
-2, -3, 5), nrow=3)),
list(w = c(1), answer = matrix(c(1, -1,
-1, 1), nrow=2))
)
)
with_parameters_test_that("A operator works in simple, manually verifiable cases", {
expect_equal(A(w), answer)
},
cases(
list(w = c(1, 2, 3, 4, 5, 6), answer = matrix(c(0, 1, 2, 3,
1, 0, 4, 5,
2, 4, 0, 6,
3, 5, 6, 0), nrow=4)),
list(w = c(1, 2, 3), answer = matrix(c(0, 1, 2,
1, 0, 3,
2, 3, 0), nrow=3)),
list(w = c(1), answer = matrix(c(0, 1,
1, 0), nrow=2))
)
)
with_parameters_test_that("L and A are linear operators", {
w1 <- c(1, 2, 3, 4, 5, 6)
w2 <- rev(w1)
a <- runif(1)
b <- runif(1)
OPw1 <- operator(w1)
OPw2 <- operator(w2)
expect_equal(a * OPw1 + b * OPw2, operator(a * w1 + b * w2))
},
cases(list(operator = L), list(operator = A))
)
test_that("verify the Lstar operator in basic case", {
Y <- diag(4)
expect_true(all(LStarOp(Y) == array(2, 6)))
expect_true(all(Lstar(Y) == array(2, 6)))
})
test_that("the composition of the Lstar and L works", {
p <- 10
l <- .5 * p * (p - 1)
w <- runif(l)
expect_true(all(Lstar(L(w)) == c(Mmat(l) %*% w)))
})
test_that("the composition of the Astar and A works", {
p <- 10
l <- .5 * p * (p - 1)
w <- runif(l)
expect_true(all(Astar(A(w)) == c(Pmat(l) %*% w)))
})
test_that("test the agreement of different implementations of the Lstar operator", {
Y <- matrix(rnorm(16), 4, 4)
w1 <- LStarOp(Y)
w2 <- LStarOpImpl(Y)
w3 <- Lstar(Y)
expect_true(all(abs(w1 - w2) < 1e-9))
expect_true(all(abs(w2 - w3) < 1e-9))
})
test_that("test the inner product relation between the operators L and Lstar", {
# section 1.1 talks about an inner product equality relation
# involving LOp and LStarOp, let's verify that
n <- 4
w <- c(1, 2, 3, 4, 5, 6)
Y <- diag(n)
Lw <- LOp(w)
y <- LStarOp(Y)
expect_true(sum(diag(t(Y) %*% Lw)) == w %*% y)
Lw <- L(w)
y <- Lstar(Y)
expect_true(sum(diag(t(Y) %*% Lw)) == w %*% y)
})
# Neither Eigen nor base R provide the canonical vec operator,
# so we need to code our own in C++ in order to compute the matrix form of
# vec(L). Anyways, let's test our vec against matrixcalc::vec.
test_that("test our vec operator with matrixcalc::vec", {
ncols <- sample(1:10, 1)
nrows <- sample(1:10, 1)
M <- matrix(runif(ncols * nrows), nrows, ncols)
expect_true(all(vec(M) == matrixcalc::vec(M)))
})
test_that("test the composition of the operator vec and L in manually verifiable cases", {
# n = 2
R2 <- matrix(c(1, -1, -1, 1), 4, 1)
expect_true(all(R2 == vecLmat(2)))
# n = 3
R3 <- matrix(c(1, 1, 0,
-1, 0, 0,
0,-1, 0,
-1, 0, 0,
1, 0, 1,
0, 0,-1,
0,-1, 0,
0, 0,-1,
0, 1, 1), 9, 3, byrow = TRUE)
expect_true(all(R3 == vecLmat(3)))
# n = 4
R4 <- matrix(c(1, 1, 1, 0, 0, 0,
-1, 0, 0, 0, 0, 0,
0,-1, 0, 0, 0, 0,
0, 0,-1, 0, 0, 0,
-1, 0, 0, 0, 0, 0,
1, 0, 0, 1, 1, 0,
0, 0, 0,-1, 0, 0,
0, 0, 0, 0,-1, 0,
0,-1, 0, 0, 0, 0,
0, 0, 0,-1, 0, 0,
0, 1, 0, 1, 0, 1,
0, 0, 0, 0, 0,-1,
0, 0,-1, 0, 0, 0,
0, 0, 0, 0,-1, 0,
0, 0, 0, 0, 0,-1,
0, 0, 1, 0, 1, 1), 16, 6, byrow = TRUE)
expect_true(all(R4 == vecLmat(4)))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.