Sobolev_coefs | R Documentation |
Given a Sobolev statistic
S_{n, p} = \sum_{i, j = 1}^n \psi(\cos^{-1}({\bf X}_i'{\bf X}_j)),
for a sample {\bf X}_1, \ldots, {\bf X}_n \in S^{p - 1} := \{{\bf x}
\in R^p : ||{\bf x}|| = 1\}
, p\ge 2
, three important sequences
are related to S_{n, p}
.
Gegenbauer coefficients \{b_{k, p}\}
of
\psi_p
(see, e.g., the projected-ecdf statistics), given
by
b_{k, p} := \frac{1}{c_{k, p}}\int_0^\pi \psi_p(\theta)
C_k^{p / 2 - 1}(\cos\theta)\,\mathrm{d}\theta.
Weights \{v_{k, p}^2\}
of the
asymptotic distribution of the Sobolev statistic,
\sum_{k = 1}^\infty v_k^2 \chi^2_{d_{p, k}}
, given by
v_{k, p}^2 = \left(1 + \frac{2k}{p - 2}\right)^{-1} b_{k, p},
\quad p \ge 3.
Gegenbauer coefficients \{u_{k, p}\}
of the
local projected alternative associated to S_{n, p}
,
given by
u_{k, p} = \left(1 + \frac{2k}{p - 2}\right) v_{k, p},
\quad p \ge 3.
For p = 2
, the factor (1 + 2k / (p - 2))
is replaced by 2
.
bk_to_vk2(bk, p, log = FALSE)
bk_to_uk(bk, p, signs = 1)
vk2_to_bk(vk2, p, log = FALSE)
vk2_to_uk(vk2, p, signs = 1)
uk_to_vk2(uk, p)
uk_to_bk(uk, p)
bk |
coefficients |
p |
integer giving the dimension of the ambient space |
log |
do operations in log scale (log-in, log-out)? Defaults to
|
signs |
signs of the coefficients |
vk2 |
squared coefficients |
uk |
coefficients |
See more details in Prentice (1978) and García-Portugués et al. (2023). The
adequate signs of uk
for the "PRt"
Rothman test
can be retrieved with akx
and sqr = TRUE
, see the
examples.
The corresponding vectors of coefficients vk2
, bk
, or
uk
, depending on the call.
García-Portugués, E., Navarro-Esteban, P., Cuesta-Albertos, J. A. (2023) On a projection-based class of uniformity tests on the hypersphere. Bernoulli, 29(1):181–204. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3150/21-BEJ1454")}.
Prentice, M. J. (1978). On invariant tests of uniformity for directions and orientations. The Annals of Statistics, 6(1):169–176. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/aos/1176344075")}
# bk, vk2, and uk for the PCvM test in p = 3
(bk <- Gegen_coefs_Pn(k = 1:5, type = "PCvM", p = 3))
(vk2 <- bk_to_vk2(bk = bk, p = 3))
(uk <- bk_to_uk(bk = bk, p = 3))
# vk2 is the same as
weights_dfs_Sobolev(K_max = 10, thre = 0, p = 3, type = "PCvM")$weights
# bk and uk for the Rothman test in p = 3, with adequate signs
t <- 1 / 3
(bk <- Gegen_coefs_Pn(k = 1:5, type = "PRt", p = 3, Rothman_t = t))
(ak <- akx(x = drop(q_proj_unif(t, p = 3)), p = 3, k = 1:5, sqr = TRUE))
(uk <- bk_to_uk(bk = bk, p = 3, signs = ak))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.