p_Kolmogorov | R Documentation |
Computation of the asymptotic null distributions of circular uniformity statistics.
p_Kolmogorov(x, K_Kolmogorov = 25L, alternating = TRUE)
d_Kolmogorov(x, K_Kolmogorov = 25L, alternating = TRUE)
p_cir_stat_Ajne(x, K_Ajne = 15L)
d_cir_stat_Ajne(x, K_Ajne = 15L)
p_cir_stat_Bingham(x)
d_cir_stat_Bingham(x)
p_cir_stat_Greenwood(x)
d_cir_stat_Greenwood(x)
p_cir_stat_Gini(x)
d_cir_stat_Gini(x)
p_cir_stat_Gini_squared(x)
d_cir_stat_Gini_squared(x)
p_cir_stat_Hodges_Ajne2(x, n, asymp_std = FALSE)
p_cir_stat_Hodges_Ajne(x, n, exact = TRUE, asymp_std = FALSE)
d_cir_stat_Hodges_Ajne(x, n, exact = TRUE, asymp_std = FALSE)
p_cir_stat_Kuiper(x, n, K_Kuiper = 12L, second_term = TRUE,
Stephens = FALSE)
d_cir_stat_Kuiper(x, n, K_Kuiper = 12L, second_term = TRUE,
Stephens = FALSE)
p_cir_stat_Log_gaps(x, abs_val = TRUE)
d_cir_stat_Log_gaps(x, abs_val = TRUE)
p_cir_stat_Max_uncover(x)
d_cir_stat_Max_uncover(x)
p_cir_stat_Num_uncover(x)
d_cir_stat_Num_uncover(x)
p_cir_stat_Pycke(x)
d_cir_stat_Pycke(x)
p_cir_stat_Vacancy(x)
d_cir_stat_Vacancy(x)
p_cir_stat_Watson(x, n = 0L, K_Watson = 25L, Stephens = FALSE)
d_cir_stat_Watson(x, n = 0L, K_Watson = 25L, Stephens = FALSE)
p_cir_stat_Watson_1976(x, K_Watson_1976 = 8L, N = 40L)
d_cir_stat_Watson_1976(x, K_Watson_1976 = 8L)
p_cir_stat_Range(x, n, max_gap = TRUE)
d_cir_stat_Range(x, n, max_gap = TRUE)
p_cir_stat_Rao(x)
d_cir_stat_Rao(x)
p_cir_stat_Rayleigh(x)
d_cir_stat_Rayleigh(x)
p_cir_stat_Bakshaev(x, K_max = 1000, thre = 0, method = "I", ...)
d_cir_stat_Bakshaev(x, K_max = 1000, thre = 0, method = "I", ...)
p_cir_stat_Gine_Fn(x, K_max = 1000, thre = 0, method = "I", ...)
d_cir_stat_Gine_Fn(x, K_max = 1000, thre = 0, method = "I", ...)
p_cir_stat_Gine_Gn(x, K_max = 1000, thre = 0, method = "I", ...)
d_cir_stat_Gine_Gn(x, K_max = 1000, thre = 0, method = "I", ...)
p_cir_stat_Hermans_Rasson(x, K_max = 1000, thre = 0, method = "I", ...)
d_cir_stat_Hermans_Rasson(x, K_max = 1000, thre = 0, method = "I", ...)
p_cir_stat_PAD(x, K_max = 1000, thre = 0, method = "I", ...)
d_cir_stat_PAD(x, K_max = 1000, thre = 0, method = "I", ...)
p_cir_stat_PCvM(x, K_max = 1000, thre = 0, method = "I", ...)
d_cir_stat_PCvM(x, K_max = 1000, thre = 0, method = "I", ...)
p_cir_stat_PRt(x, t = 1/3, K_max = 1000, thre = 0, method = "I", ...)
d_cir_stat_PRt(x, t = 1/3, K_max = 1000, thre = 0, method = "I", ...)
p_cir_stat_Poisson(x, rho = 0.5, K_max = 1000, thre = 0, method = "I",
...)
d_cir_stat_Poisson(x, rho = 0.5, K_max = 1000, thre = 0, method = "I",
...)
p_cir_stat_Pycke_q(x, q = 0.5, K_max = 1000, thre = 0, method = "I",
...)
d_cir_stat_Pycke_q(x, q = 0.5, K_max = 1000, thre = 0, method = "I",
...)
p_cir_stat_Rothman(x, t = 1/3, K_max = 1000, thre = 0, method = "I",
...)
d_cir_stat_Rothman(x, t = 1/3, K_max = 1000, thre = 0, method = "I",
...)
p_cir_stat_Riesz(x, s = 1, K_max = 1000, thre = 0, method = "I", ...)
d_cir_stat_Riesz(x, s = 1, K_max = 1000, thre = 0, method = "I", ...)
p_cir_stat_Sobolev(x, vk2 = c(0, 0, 1), method = "I", ...)
d_cir_stat_Sobolev(x, vk2 = c(0, 0, 1), method = "I", ...)
p_cir_stat_Softmax(x, kappa = 1, K_max = 1000, thre = 0, method = "I",
...)
d_cir_stat_Softmax(x, kappa = 1, K_max = 1000, thre = 0, method = "I",
...)
x |
a vector of size |
K_Kolmogorov , K_Kuiper , K_Watson , K_Watson_1976 , K_Ajne |
integer giving
the truncation of the series present in the null asymptotic distributions.
For the Kolmogorov-Smirnov-related series defaults to |
alternating |
use the alternating series expansion for the distribution
of the Kolmogorov-Smirnov statistic? Defaults to |
n |
sample size employed for computing the statistic. |
asymp_std |
compute the distribution associated to the normalized
Hodges-Ajne statistic? Defaults to |
exact |
use the exact distribution for the Hodges-Ajne statistic?
Defaults to |
second_term |
use the second-order series expansion for the
distribution of the Kuiper statistic? Defaults to |
Stephens |
compute Stephens (1970) modification so that the null distribution of the is less dependent on the sample size? The modification does not alter the test decision. |
abs_val |
compute the distribution associated to the absolute value of
the Darling's log gaps statistic? Defaults to |
N |
number of points used in the
Gauss-Legendre quadrature. Defaults to |
max_gap |
compute the distribution associated to the maximum gap for
the range statistic? Defaults to |
K_max |
integer giving the truncation of the series that compute the
asymptotic p-value of a Sobolev test. Defaults to |
thre |
error threshold for the tail probability given by the
the first terms of the truncated series of a Sobolev test. Defaults to
|
method |
method for approximating the density, distribution, or
quantile function of the weighted sum of chi squared random variables. Must
be |
... |
further parameters passed to |
t |
|
rho |
|
q |
|
s |
|
vk2 |
weights for the finite Sobolev test. A non-negative vector or
matrix. Defaults to |
kappa |
|
Descriptions and references for most of the tests are available in García-Portugués and Verdebout (2018).
A matrix of size c(nx, 1)
with the evaluation of the
distribution or density function at x
.
García-Portugués, E. and Verdebout, T. (2018) An overview of uniformity tests on the hypersphere. arXiv:1804.00286. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.48550/arXiv.1804.00286")}.
# Ajne
curve(d_cir_stat_Ajne(x), to = 1.5, n = 2e2, ylim = c(0, 4))
curve(p_cir_stat_Ajne(x), n = 2e2, col = 2, add = TRUE)
# Bakshaev
curve(d_cir_stat_Bakshaev(x, method = "HBE"), to = 6, n = 2e2,
ylim = c(0, 1))
curve(p_cir_stat_Bakshaev(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Bingham
curve(d_cir_stat_Bingham(x), to = 12, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Bingham(x), n = 2e2, col = 2, add = TRUE)
# Greenwood
curve(d_cir_stat_Greenwood(x), from = -6, to = 6, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Greenwood(x), n = 2e2, col = 2, add = TRUE)
# Hermans-Rasson
curve(p_cir_stat_Hermans_Rasson(x, method = "HBE"), to = 10, n = 2e2,
ylim = c(0, 1))
curve(d_cir_stat_Hermans_Rasson(x, method = "HBE"), n = 2e2, add = TRUE,
col = 2)
# Hodges-Ajne
plot(25:45, d_cir_stat_Hodges_Ajne(cbind(25:45), n = 50), type = "h",
lwd = 2, ylim = c(0, 1))
lines(25:45, p_cir_stat_Hodges_Ajne(cbind(25:45), n = 50), type = "s",
col = 2)
# Kolmogorov-Smirnov
curve(d_Kolmogorov(x), to = 3, n = 2e2, ylim = c(0, 2))
curve(p_Kolmogorov(x), n = 2e2, col = 2, add = TRUE)
# Kuiper
curve(d_cir_stat_Kuiper(x, n = 50), to = 3, n = 2e2, ylim = c(0, 2))
curve(p_cir_stat_Kuiper(x, n = 50), n = 2e2, col = 2, add = TRUE)
# Kuiper and Watson with Stephens modification
curve(d_cir_stat_Kuiper(x, n = 8, Stephens = TRUE), to = 2.5, n = 2e2,
ylim = c(0, 10))
curve(d_cir_stat_Watson(x, n = 8, Stephens = TRUE), n = 2e2, lty = 2,
add = TRUE)
n <- c(10, 20, 30, 40, 50, 100, 500)
col <- rainbow(length(n))
for (i in seq_along(n)) {
curve(d_cir_stat_Kuiper(x, n = n[i], Stephens = TRUE), n = 2e2,
col = col[i], add = TRUE)
curve(d_cir_stat_Watson(x, n = n[i], Stephens = TRUE), n = 2e2,
col = col[i], lty = 2, add = TRUE)
}
# Maximum uncovered spacing
curve(d_cir_stat_Max_uncover(x), from = -3, to = 6, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Max_uncover(x), n = 2e2, col = 2, add = TRUE)
# Number of uncovered spacing
curve(d_cir_stat_Num_uncover(x), from = -4, to = 4, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Num_uncover(x), n = 2e2, col = 2, add = TRUE)
# Log gaps
curve(d_cir_stat_Log_gaps(x), from = -1, to = 4, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Log_gaps(x), n = 2e2, col = 2, add = TRUE)
# Gine Fn
curve(d_cir_stat_Gine_Fn(x, method = "HBE"), to = 2.5, n = 2e2,
ylim = c(0, 2))
curve(p_cir_stat_Gine_Fn(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Gine Gn
curve(d_cir_stat_Gine_Gn(x, method = "HBE"), to = 2.5, n = 2e2,
ylim = c(0, 2))
curve(p_cir_stat_Gine_Gn(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Gini mean difference
curve(d_cir_stat_Gini(x), from = -4, to = 4, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Gini(x), n = 2e2, col = 2, add = TRUE)
# Gini mean squared difference
curve(d_cir_stat_Gini_squared(x), from = -10, to = 10, n = 2e2,
ylim = c(0, 1))
curve(p_cir_stat_Gini_squared(x), n = 2e2, col = 2, add = TRUE)
# PAD
curve(d_cir_stat_PAD(x, method = "HBE"), to = 3, n = 2e2, ylim = c(0, 1.5))
curve(p_cir_stat_PAD(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# PCvM
curve(d_cir_stat_PCvM(x, method = "HBE"), to = 4, n = 2e2, ylim = c(0, 2))
curve(p_cir_stat_PCvM(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# PRt
curve(d_cir_stat_PRt(x, method = "HBE"), n = 2e2, ylim = c(0, 5))
curve(p_cir_stat_PRt(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Poisson
curve(d_cir_stat_Poisson(x, method = "HBE"), from = -1, to = 5, n = 2e2,
ylim = c(0, 2))
curve(p_cir_stat_Poisson(x, method = "HBE"), n = 2e2, col = 2, add = TRUE)
# Pycke
curve(d_cir_stat_Pycke(x), from = -5, to = 10, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Pycke(x), n = 2e2, col = 2, add = TRUE)
# Pycke q
curve(d_cir_stat_Pycke_q(x, method = "HBE"), to = 15, n = 2e2,
ylim = c(0, 1))
curve(p_cir_stat_Pycke_q(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Range
curve(d_cir_stat_Range(x, n = 50), to = 2, n = 2e2, ylim = c(0, 4))
curve(p_cir_stat_Range(x, n = 50), n = 2e2, col = 2, add = TRUE)
# Rao
curve(d_cir_stat_Rao(x), from = -6, to = 6, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Rao(x), n = 2e2, col = 2, add = TRUE)
# Rayleigh
curve(d_cir_stat_Rayleigh(x), to = 12, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Rayleigh(x), n = 2e2, col = 2, add = TRUE)
# Riesz
curve(d_cir_stat_Riesz(x, method = "HBE"), to = 6, n = 2e2,
ylim = c(0, 1))
curve(p_cir_stat_Riesz(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Rothman
curve(d_cir_stat_Rothman(x, method = "HBE"), n = 2e2, ylim = c(0, 5))
curve(p_cir_stat_Rothman(x, method = "HBE"), n = 2e2, add = TRUE, col = 2)
# Vacancy
curve(d_cir_stat_Vacancy(x), from = -4, to = 4, n = 2e2, ylim = c(0, 1))
curve(p_cir_stat_Vacancy(x), n = 2e2, col = 2, add = TRUE)
# Watson
curve(d_cir_stat_Watson(x), to = 0.5, n = 2e2, ylim = c(0, 15))
curve(p_cir_stat_Watson(x), n = 2e2, col = 2, add = TRUE)
# Watson (1976)
curve(d_cir_stat_Watson_1976(x), to = 1.5, n = 2e2, ylim = c(0, 3))
curve(p_cir_stat_Watson_1976(x), n = 2e2, col = 2, add = TRUE)
# Softmax
curve(d_cir_stat_Softmax(x, method = "HBE"), to = 3, n = 2e2, ylim = c(0, 2))
curve(p_cir_stat_Softmax(x, method = "HBE"), n = 2e2, col = 2, add = TRUE)
# Sobolev
vk2 <- c(0.5, 0)
curve(d_cir_stat_Sobolev(x = x, vk2 = vk2), to = 3, n = 2e2, ylim = c(0, 2))
curve(p_cir_stat_Sobolev(x = x, vk2 = vk2), n = 2e2, col = 2, add = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.