angles_to_sphere | R Documentation |
Transforms the angles (\theta_1,\ldots,\theta_{p-1})'
in
[0,\pi)^{p-2}\times[-\pi,\pi)
into the Cartesian coordinates
(\cos(x_1),\sin(x_1)\cos(x_2),\ldots,
\sin(x_1)\cdots\sin(x_{p-2})\cos(x_{p-1}),
\sin(x_1)\cdots\sin(x_{p-2})\sin(x_{p-1}))'
of S^{p-1}
, and vice versa.
angles_to_sphere(theta)
sphere_to_angles(x)
theta |
matrix of size |
x |
matrix of size |
For angles_to_sphere
, the matrix x
. For
sphere_to_angles
, the matrix theta
.
# Check changes of coordinates
sphere_to_angles(angles_to_sphere(c(pi / 2, 0, pi)))
sphere_to_angles(angles_to_sphere(rbind(c(pi / 2, 0, pi), c(pi, pi / 2, 0))))
angles_to_sphere(sphere_to_angles(c(0, sqrt(0.5), sqrt(0.1), sqrt(0.4))))
angles_to_sphere(sphere_to_angles(
rbind(c(0, sqrt(0.5), sqrt(0.1), sqrt(0.4)),
c(0, sqrt(0.5), sqrt(0.5), 0),
c(0, 1, 0, 0),
c(0, 0, 0, -1),
c(0, 0, 1, 0))))
# Circle
sphere_to_angles(angles_to_sphere(0))
sphere_to_angles(angles_to_sphere(cbind(0:3)))
angles_to_sphere(cbind(sphere_to_angles(rbind(c(0, 1), c(1, 0)))))
angles_to_sphere(cbind(sphere_to_angles(rbind(c(0, 1)))))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.