Nothing
#' Get Fitted Values
#'
#' @param betahat Vector of fixed effects
#' @param spcov_params A \code{spcov_params} object
#' @param X Model matrix
#' @param eigenprods A \code{eigenprods} object
#' @param dist_matrix A distance matrix
#' @param randcov_params A \code{randcov_params} object
#' @param randcov_Zs Random effect design matrices
#'
#' @return A list of fitted values
#'
#' @noRd
get_fitted_splm <- function(betahat, spcov_params, data_object, eigenprods_list,
dist_matrix_list, randcov_params = NULL) {
fitted_response <- as.numeric(do.call("rbind", lapply(data_object$X_list, function(x) x %*% betahat)))
if (!is.null(data_object$offset)) {
fitted_response <- fitted_response + data_object$offset
}
## fitted values
### resid pearson is siginv^(-1/2)(y - x beta)
### so upchol is from siginv^(-1/2)uptri * siginv^(-1/2)(y - x beta)
### packsolve used because upper triangluar
### this gives siginv (y - x beta)
SigInv_r_list <- lapply(eigenprods_list, function(x) x$SigInv_y - x$SigInv_X %*% betahat)
# cov params no de (set ie portion to zero because BLUP only uses cov(dependent error))
spcov_params_de_only <- spcov_params
spcov_params_de_only[["ie"]] <- 0
spcov_matrix_de_only_list <- lapply(
dist_matrix_list,
function(x) spcov_matrix(spcov_params = spcov_params_de_only, dist_matrix = x)
)
### cov(dependent error) * Z (identity) * siginv (y - x beta)
fitted_de <- as.numeric(do.call("rbind", mapply(
s = spcov_matrix_de_only_list, r = SigInv_r_list,
function(s, r) s %*% r, SIMPLIFY = FALSE
)))
### cov(independent error) is zero so this gives
### sigma^2(independent) * Identity * Z (identity) * siginv (y - x beta)
fitted_ie <- as.numeric(spcov_params[["ie"]] * do.call("rbind", SigInv_r_list))
## fitted random effects
if (is.null(names(randcov_params))) {
fitted_randcov <- NULL
} else {
fitted_randcov <- lapply(names(randcov_params), function(x) {
fitted_val <- randcov_params[[x]] * do.call("rbind", mapply(
z = data_object$randcov_list,
r = SigInv_r_list,
function(z, r) {
crossprod(z[[x]][["Z"]], r)
}
))
fitted_val <- tapply(fitted_val, rownames(fitted_val), function(x) {
if (any(x != 0)) {
val <- mean(x[x != 0])
} else {
val <- 0
}
# if (length(val) == 0) { # replace if all zeros somehow
# val <- rep(0, length(x))
# names(val) <- names(x)
# }
# if all elements of x are zero then val is NaN, so reset it to zero
# this works but above uncommented code is cleaner
# if (is.na(val)) {
# val <- 0
# }
# val
})
# all combinations yields values with many zeros -- don't want to include these in the mean
names_fitted_val <- rownames(fitted_val)
fitted_val <- as.numeric(fitted_val)
names(fitted_val) <- names_fitted_val
fitted_val
})
names(fitted_randcov) <- names(randcov_params)
}
fitted_values <- list(
response = fitted_response,
spcov = list(de = fitted_de, ie = fitted_ie),
randcov = fitted_randcov
)
}
get_fitted_spautor <- function(betahat, spcov_params, data_object, eigenprods,
randcov_params = NULL) {
dist_matrix <- data_object$W[data_object$observed_index, data_object$observed_index, drop = FALSE]
M <- data_object$M[data_object$observed_index]
fitted_response <- data_object$X %*% betahat
if (!is.null(data_object$offset)) {
fitted_response <- fitted_response + data_object$offset
}
## fitted values
### resid pearson is siginv^(-1/2)(y - x beta)
### so upchol is from siginv^(-1/2)uptri * siginv^(-1/2)(y - x beta)
### packsolve used because upper triangluar
### this gives siginv (y - x beta)
SigInv_r <- eigenprods$SigInv_y - eigenprods$SigInv_X %*% betahat
# cov params no de (set ie portion to zero because BLUP only uses cov(dependent error))
spcov_params_de_only <- spcov_params
spcov_params_de_only[["ie"]] <- 0
spcov_matrix_de_only <- spcov_matrix(spcov_params = spcov_params_de_only, dist_matrix = dist_matrix, M = M)
if (!is.null(data_object$partition_factor)) {
spcov_matrix_de_only <- spcov_matrix_de_only * data_object$partition_matrix[data_object$observed_index, data_object$observed_index, drop = FALSE]
}
### cov(dependent error) * Z (identity) * siginv (y - x beta)
fitted_de <- spcov_matrix_de_only %*% SigInv_r
### cov(independent error) is zero so this gives
### sigma^2(independent) * Identity * Z (identity) * siginv (y - x beta)
fitted_ie <- spcov_params[["ie"]] * SigInv_r
## fitted random effects
if (is.null(names(randcov_params))) {
fitted_randcov <- NULL
} else {
if (is.null(data_object$partition_factor)) {
ob_randcov_Zs <- get_randcov_Zs(data_object$obdata, names(randcov_params), ZZt = FALSE)
fitted_randcov <- lapply(names(randcov_params), function(x) {
fitted_val <- randcov_params[[x]] * crossprod(ob_randcov_Zs[[x]][["Z"]], SigInv_r)
names_fitted_val <- rownames(fitted_val)
fitted_val <- as.vector(fitted_val)
names(fitted_val) <- names_fitted_val
fitted_val
})
names(fitted_randcov) <- names(randcov_params)
} else {
index <- unname(model.response(model.frame(reformulate("1", response = labels(terms(data_object$partition_factor))),
data = data_object$obdata
)))
index_val <- unique(index)
ob_randcov_Zs <- get_randcov_Zs(data_object$obdata, names(randcov_params), ZZt = FALSE)
fitted_randcov <- lapply(names(randcov_params), function(x) {
fitted_val <- lapply(index_val, function(y) {
row_val <- y == index
fitted_vals <- randcov_params[[x]] *
crossprod(ob_randcov_Zs[[x]][["Z"]][row_val, , drop = FALSE], SigInv_r[row_val, , drop = FALSE])
})
fitted_val <- do.call("rbind", fitted_val)
fitted_val <- tapply(fitted_val, rownames(fitted_val), function(x) {
val <- mean(x[x != 0])
if (length(val) == 0) { # replace if all zeros somehow
val <- rep(0, length(x))
names(val) <- names(x)
}
val
})
names_fitted_val <- rownames(fitted_val)
fitted_val <- as.vector(fitted_val)
names(fitted_val) <- names_fitted_val
fitted_val
})
names(fitted_randcov) <- names(randcov_params)
}
}
fitted_values <- list(
response = as.numeric(fitted_response),
spcov = list(de = as.numeric(fitted_de), ie = as.numeric(fitted_ie)),
randcov = fitted_randcov
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.