Nothing
#' @name summary.spjctest
#' @rdname summary.spjctest
#'
#' @title Summary of estimated objects of class \emph{spjctest}.
#'
#' @description This function summarizes estimated \emph{spjctest} objects.
#' The tables in the output include basic information for each test.
#' blablabla...
#'
#' @param object An \emph{spjctest} object including a list of \emph{htest}.
#' @param ... further arguments passed to or from other methods.
#'
#' @return An object of class \emph{summary.spjctest}
#'
#' @author
#' \tabular{ll}{
#' Fernando López \tab \email{fernando.lopez@@upct.es} \cr
#' Román Mínguez \tab \email{roman.minguez@@uclm.es} \cr
#' Antonio Páez \tab \email{paezha@@gmail.com} \cr
#' Manuel Ruiz \tab \email{manuel.ruiz@@upct.es} \cr
#' }
#'
#' @seealso
#' \code{\link{print.summary.spqtest}},
#' \code{\link[spdep]{joincount.test}},
#' \code{\link[spdep]{joincount.multi}}
#'
#' @examples
#' ## Multinomial + Binomial using a sf multipolygon
#' data("provinces_spain")
#' sf::sf_use_s2(FALSE)
#' provinces_spain$Male2Female <- factor(provinces_spain$Male2Female > 100)
#' levels(provinces_spain$Male2Female) = c("men","woman")
#' provinces_spain$Older <- cut(provinces_spain$Older, breaks = c(-Inf,19,22.5,Inf))
#' levels(provinces_spain$Older) = c("low","middle","high")
#' f1 <- ~ Older + Male2Female
#' jc1 <- jc.test(formula = f1,
#' data = provinces_spain,
#' distr = "mc",
#' alternative = "greater",
#' zero.policy = TRUE)
#' summary(jc1)
#' @export
summary.spjctest <- function(object, ...) {
z <- object
stopifnot(inherits(z, "spjctest"))
## Build a tibble with the results...
table_res <- NULL
## Defines variables to prevent next Note
## "no visible binding for global variable..."
estimate1 <- estimate2 <- estimate3 <- NULL
statistic <- parameter <- NULL
var.name <- type.test <- NULL
method <- pairs <- NULL
value <- `z-value` <- NULL
p.value <- pvalue <- NULL
Joincount <- Expected <- Variance <- NULL
col_table_res <- c("var.name",
"pairs",
"Joincount",
"Expected",
"Variance",
"z-value",
"pvalue",
"rank_observed",
"alternative",
"distrib",
"method",
"type.test")
for (i in 1:length(z)) {
if (inherits(z[[i]], "jcmulti")) {
alternative <- attributes(z[[i]])$alternative
distribution <- attributes(z[[i]])$distribution
table_resi <- as.data.frame(z[[i]])
table_resi <- tidyr::as_tibble(table_resi)
table_resi$`distrib` <- distribution
if (distribution == "asymptotic") {
table_resi$`rank_observed` <- NA
table_resi$`method` <- "Join count test under nonfree sampling"
}
if (distribution == "mc") {
table_resi$`z-value` <- NA
table_resi$`method` <- "Monte-Carlo simulation of
join-count statistic (nonfree sampling)"
}
table_resi$alternative <- paste("alternative: ",
alternative,
sep="")
table_resi$`type.test` <- "multinomial"
table_resi$`pairs` <- rownames(z[[i]])
table_resi$`var.name` <- attr(z[[i]], "data.name")
table_resi <- table_resi[,
col_table_res]
table_res <- rbind(table_res,
table_resi)
}
if (inherits(z[[i]], "jclist")) {
for (j in 1:length(z[[i]])) {
alternative <- attributes(z[[i]][[j]])$alternative
distribution <- attributes(z[[i]][[j]])$distribution
table_resi <- broom::tidy(z[[i]][[j]])
table_resi$`var.name` <- z[[i]][[j]]$data.name
table_resi$`type.test` <- "binomial"
table_resi$`pairs` <- z[[i]][[j]]$level
table_resi$alternative <- paste("alternative: ",
alternative,
sep="")
table_resi$`distrib` <- distribution
if (distribution == "mc") {
table_resi <- dplyr::rename(table_resi,
`Joincount` = statistic)
table_resi <- dplyr::rename(table_resi,
`Expected` = estimate1)
table_resi <- dplyr::rename(table_resi,
`Variance` = estimate2)
table_resi <- dplyr::rename(table_resi,
`rank_observed` =
parameter)
table_resi$`z-value` <- NA
} else {
table_resi <- dplyr::rename(table_resi,
`Joincount` = estimate1)
table_resi <- dplyr::rename(table_resi,
`Expected` = estimate2)
table_resi <- dplyr::rename(table_resi,
`Variance` = estimate3)
table_resi <- dplyr::rename(table_resi,
`z-value` = statistic)
table_resi$`rank_observed` <- NA
}
table_resi <- dplyr::rename(table_resi,
`pvalue` = p.value)
table_resi <- table_resi[,
col_table_res]
table_res <- rbind(table_res,
table_resi)
}
}
}
if (distribution == "asymptotic") {
tbl <- table_res %>%
dplyr::select(var.name, type.test, alternative, method, pairs, `z-value`,
pvalue, Joincount, Expected, Variance) %>%
dplyr::group_by(var.name, type.test, alternative, method)
gt_tbl <- gt::gt(tbl) %>%
gt::tab_header(
title = "JoinCount Spatial Tests (asymptotic)") %>%
gt::fmt_number(
columns = c("z-value", "Expected", "Variance"),
decimals = 2) %>%
gt::fmt_number(
columns = c("pvalue"),
decimals = 5)
} else {
tbl <- table_res %>%
dplyr::select(var.name, type.test, alternative, method, pairs,
pvalue, Joincount, Expected, Variance) %>%
dplyr::group_by(var.name, type.test, alternative, method)
gt_tbl <- gt::gt(tbl) %>%
gt::tab_header(
title = "JoinCount Spatial Tests (Monte Carlo)") %>%
gt::fmt_number(
columns = c("Expected", "Variance"),
decimals = 2) %>%
gt::fmt_number(
columns = c("pvalue"),
decimals = 5)
}
class(gt_tbl) <- c("summary.spjctest", "gt_tbl")
return(gt_tbl)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.