inst/shiny-squid/source/server/modules/module1/svr_mod1_step_4.R

#Server functions for module 1 step 4
c(
  
    ######### Set variables #########    
      # Set hidden variables
      Mod1Step4updateB <- function(input){
        suppressWarnings(B <- sqrt(1-input$Mod1Step4_Vi-input$Mod1Step4_Ve))
        return(ifelse(is.finite(B), B, 0))
      },
      output$Mod1Step4_hidden <- renderUI({
        list(
          numericInput("Mod1Step4_Tmax", "", Modules_VAR$Tmax$max),
          shinyMatrix::matrixInput("Mod1Step4_Vind", 
                      value = matrix(c(input$Mod1Step4_Vi,
                                      rep(0,(nb.IS*nb.IS)-1)),
                                    nb.IS), 
                      class = "numeric"),
          numericInput("Mod1Step4_Vbx","", 1-input$Mod1Step4_Vi-input$Mod1Step4_Ve),
          shinyMatrix::matrixInput("Mod1Step4_B", value = matrix(c(0,Mod1Step4updateB(input),0,0),1), class = "numeric"),
          checkboxInput("Mod1Step4_X1_state", "", value = TRUE),
          checkboxInput("Mod1Step4_X1_sto_state", "", value = TRUE),
          numericInput("Mod1Step4_X1_sto_V","", 1, min = 0, max = 1, step = 0.001)
        )
      }),
      outputOptions(output, "Mod1Step4_hidden", suspendWhenHidden = FALSE),
  
    # display variable (known environmental effect Vbx)
    output$Mod1Step4_Vbx_txt <- renderUI({
      
      if(!testInput(input$Mod1Step4_Vbx, Modules_VAR$Vbx, FALSE, FALSE)){
        output <- span(strong(round(input$Mod1Step4_Vbx,2),class="alert alert-danger"))
      }else{
        output <- span(round(input$Mod1Step4_Vbx,2))
      }
      
      p(HTML(paste(strong(Modules_VAR$Vbx$label),output,"")))
      
    }),
      
    ######### Run simulation #########
      Mod1Step4_output <- reactive({
        if(input$Mod1Step4_Run == 0) # if Run button is pressed
          return(NULL)
        
        isolate({
          
          updateCheckboxInput(session, "isRunning", value = TRUE)

          # Call app main function
          data <- squid::squidR(input, module="Mod1Step4")
          LMR  <- lme4::lmer(Phenotype ~ 1 + X1 + (1|Individual), data = data$sampled_data)
          
          FIXEF    <- lme4::fixef(LMR)
          SE.FIXEF <- arm::se.fixef(LMR)
          RANDEF   <- as.data.frame(lme4::VarCorr(LMR))$vcov
          
          # Make a mixed effect model to extract variances and slope
          data$Vp            <- round(var(data$sampled_data$Phenotype),2)
          data$Vi            <- round(RANDEF[1],2)
          data$Ve            <- round(RANDEF[2],2)
          data$B0            <- round(FIXEF["(Intercept)"],2)
          data$se.B0         <- round(SE.FIXEF["(Intercept)"],2)
          data$B1            <- round(FIXEF["X1"],2)
          data$se.B1         <- round(SE.FIXEF["X1"],2)
          data$phenotypeMean <- round(mean(data$sampled_data$Phenotype),2)
          
          updateCheckboxInput(session, "isRunning", value = FALSE)
          
          return(data)
        })
      }),
   	
    ######### Display results (graph) #########
      # Graph: Individual phenotypes over environment
      output$Mod1Step4_plot1 <- renderPlot({
        
        data      <- Mod1Step4_output()
        
        if(!is.null(data)){
          
          isolate({ 

            ggplot2::ggplot(data$sampled_data, ggplot2::aes(x     = X1,
                                                            y     = Phenotype)) +
              ggplot2::geom_point() + 
              ggplot2::geom_smooth(method = "lm", se = FALSE) +
              ggplot2::xlab("Environment") +
              ggplot2::ylab("Phenotype") + 
              ggplot2::ggtitle(bquote(italic(beta[(estimated)]) == .(data$B1) %+-% .(data$se.B1) ~~ (italic(beta[(true)]) == .(round(input$Mod1Step4_B[1,2],2)))))
        
          })
          
        }else{defaultPlot()}
                
      }),

      # Graph: Individual reaction norm  
      output$Mod1Step4_plot2 <- renderPlot({ 
      
        data      <- Mod1Step4_output()
        
        if(!is.null(data)){
          
          isolate({ 
            ggplot2::ggplot(data$sampled_data, ggplot2::aes(x     = X1, 
                                                            y     = Phenotype, 
                                                            color = as.factor(Individual),
                                                            group = as.factor(Individual))) +
              ggplot2::geom_point() +
              ggplot2::geom_smooth(method = "lm", se = FALSE) +
              ggplot2::xlab("Environment") +
              ggplot2::ylab("Phenotype per individual")

          })
          
        }else{defaultPlot()}
      }),

      # Table : display true and measured values (Vp, Ve, mean and Beta es)
      output$Mod1Step4_summary_table <- renderUI({
        
        data <- Mod1Step4_output()
        
        myTable <- data.frame("True"       = c(paste("Population intercept ($",EQ3$mean0,"$) = 0"),
                                               paste("Individual variance ($V_",NOT$devI,"$) =",input$Mod1Step4_Vi),
                                               paste("Measurement variance ($V_",NOT$mError,"$) =",input$Mod1Step4_Ve),
                                               "Mean of the trait ($\\mu$) = 0",
                                               paste("Slope of environmental effect ($",NOT$mean,"$) =",round(input$Mod1Step4_B[1,2],2))),
                              "Estimated" = c(paste("Population estimated mean ($",NOT$mean,"'_0$) = ", ifelse(!is.null(data),paste(data$B0,"\U00b1", data$se.B0, sep=" "),"...")),
                                              paste("Individual variance in sample ($V'_",NOT$devI,"$) = ", ifelse(!is.null(data),data$Vi,"...")),
                                              paste("Residual variance of sample ($V'_",NOT$residualUpper,"$) = ", ifelse(!is.null(data),data$Ve,"...")),
                                              paste("Sampled mean of the trait ($\\mu'$) = ", ifelse(!is.null(data),data$phenotypeMean,"...")),
                                              paste("Estimated slope of environmental effect ($",NOT$mean,"'$) = ", ifelse(!is.null(data),paste(data$B1,"\U00b1", data$se.B1, sep=" "),"..."))) 
                             )  
        
        getTable(myTable)
    
      }), 	
    
    ######### Manage errors #########
      observe({
        if(!testInput(input$Mod1Step4_Vbx, Modules_VAR$Vbx, FALSE, FALSE)){
          disableActionButton("Mod1Step4_Run", session, "true")
        }else{
          disableActionButton("Mod1Step4_Run", session, "false")
        }
      }),
      output$Mod1Step4_error_Vbx   <- renderUI({testInput(input$Mod1Step4_Vbx, Modules_VAR$Vbx, FALSE, TRUE)})
  
  ) # End return

Try the squid package in your browser

Any scripts or data that you put into this service are public.

squid documentation built on Jan. 22, 2022, 1:06 a.m.