Nothing
#Asymptotic regression model ##############################
asymReg.fun <- function(predictor, init, m, plateau) {
x <- predictor
plateau - (plateau - init) * exp (- m * x)
}
asymReg.Init <- function(mCall, LHS, data, ...) {
xy <- sortedXyData(mCall[["predictor"]], LHS, data)
x <- xy[, "x"]; y <- xy[, "y"]
plateau <- NLSstRtAsymptote(xy)
dataR <- xy[1:2,]
init <- coef(lm(y ~ x, data = dataR))[1]
## Linear regression on pseudo y values
pseudoY <- log( ( y - plateau )/(init - plateau ) )
coefs <- coef( lm(pseudoY ~ x - 1) )
m <- - coefs[1]
value <- c(init, m, plateau)
names(value) <- mCall[c("init", "m", "plateau")]
value
}
NLS.asymReg <- selfStart(asymReg.fun, asymReg.Init, parameters=c("init", "m", "plateau"))
DRC.asymReg <- function(fixed = c(NA, NA, NA), names = c("init", "m", "plateau")){
## Checking arguments
numParm <- 3
if (!is.character(names) | !(length(names) == numParm)) {stop("Not correct 'names' argument")}
if (!(length(fixed) == numParm)) {stop("Not correct 'fixed' argument")}
## Fixing parameters (using argument 'fixed')
notFixed <- is.na(fixed)
parmVec <- rep(0, numParm)
parmVec[!notFixed] <- fixed[!notFixed]
## Defining the non-linear function
fct <- function(x, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
init <- parmMat[, 1]; m <- parmMat[, 2]; plateau <- parmMat[, 3];
plateau - (plateau - init) * exp (- m * x)
}
## Defining self starter function
ssfct <- function(dataf)
{
x <- dataf[, 1]
y <- dataf[, 2]
dataS <- sortedXyData(x, y)
plateau <- NLSstRtAsymptote(dataS)
dataR <- dataS[1:2,]
init <- coef(lm(y ~ x, data = dataR))[1]
## Linear regression on pseudo y values
pseudoY <- log( ( y - plateau )/(init - plateau ) )
coefs <- coef( lm(pseudoY ~ x - 1) )
m <- - coefs[1]
return(c(init, m, plateau)[notFixed])
}
## Defining names
pnames <- names[notFixed]
## Defining derivatives
deriv1 <- function(x, parms){
parmMat <- matrix(parmVec, nrow(parms),
numParm, byrow = TRUE)
parmMat[, notFixed] <- parms
# Approximation by using finite differences
a <- as.numeric(parmMat[,1])
b <- as.numeric(parmMat[,2])
c <- as.numeric(parmMat[,3])
d1.1 <- asymReg.fun(x, a, b, c)
d1.2 <- asymReg.fun(x, (a + 10e-7), b, c)
d1 <- (d1.2 - d1.1)/10e-7
d2.1 <- asymReg.fun(x, a, b, c)
d2.2 <- asymReg.fun(x, a, (b + 10e-7), c )
d2 <- (d2.2 - d2.1)/10e-7
d3.1 <- asymReg.fun(x, a, b, c)
d3.2 <- asymReg.fun(x, a, b, (c + 10e-7) )
d3 <- (d3.2 - d3.1)/10e-7
cbind(d1, d2, d3)[notFixed]
}
## Defining the first derivative (in x=dose)
## based on deriv(~c+(d-c)*(exp(-exp(b*(log(x)-log(e))))), "x", function(x, b,c,d,e){})
derivx <- function(x, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
a <- as.numeric(parmMat[,1])
b <- as.numeric(parmMat[,2])
c <- as.numeric(parmMat[,3])
d1.1 <- asymReg.fun(x, a, b, c)
d1.2 <- asymReg.fun((x + 10e-7), a, b, c)
d1 <- (d1.2 - d1.1)/10e-7
d1
}
## Defining the ED function
## Defining the inverse function
## Defining descriptive text
text <- "Asymptotic Regression Model"
## Returning the function with self starter and names
returnList <- list(fct = fct, ssfct = ssfct, names = pnames,
text = text, noParm = sum(is.na(fixed)),
deriv1 = deriv1, derivx = derivx)
class(returnList) <- "drcMean"
invisible(returnList)
}
DRC.SSasymp <- function(fixed = c(NA, NA, NA),
names = c("Asym", "R0", "lrc")) {
## Checking arguments
numParm <- 3
# if (!is.character(names) | !(length(names) == numParm)) {stop("Not correct 'names' argument")}
# if (!(length(fixed) == numParm)) {stop("Not correct 'fixed' argument")}
## Fixing parameters (using argument 'fixed')
notFixed <- is.na(fixed)
parmVec <- rep(0, numParm)
parmVec[!notFixed] <- fixed[!notFixed]
## Defining the non-linear function
fct <- function(x, parm)
{
# same model as above, but lrc = log(m)
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
Asym <- parmMat[, 1]; R0 <- parmMat[, 2]; lrc <- parmMat[, 3]
Asym + (R0 - Asym) * exp (- exp(lrc) * x)
}
## Defining self starter function
ssfct <- function(dataf)
{
x <- dataf[, 1]
y <- dataf[, 2]
dataS <- sortedXyData(x, y)
Asym <- NLSstRtAsymptote(dataS)
dataR <- dataS[1:2,]
R0 <- coef(lm(y ~ x, data = dataR))[1]
## Linear regression on pseudo y values
pseudoY <- log( ( y - Asym )/(R0 - Asym ) )
coefs <- coef( lm(pseudoY ~ x - 1) )
b <- - coefs[1]
lrc <- log(b)
return(c(Asym, R0, lrc)[notFixed])
}
## Defining names
pnames <- names[notFixed]
## Defining derivatives
deriv1 <- function(x, parms){
parmMat <- matrix(parmVec, nrow(parms),
numParm, byrow = TRUE)
parmMat[, notFixed] <- parms
meanfun <- function(x, a, b, c) {
a + (b - a) * exp (- exp(c) * x)
}
# Approximation by using finite differences
a <- as.numeric(parmMat[,1])
b <- as.numeric(parmMat[,2])
c <- as.numeric(parmMat[,3])
d1.1 <- meanfun(x, a, b, c)
d1.2 <- meanfun(x, (a + 10e-7), b, c)
d1 <- (d1.2 - d1.1)/10e-7
d2.1 <- meanfun(x, a, b, c)
d2.2 <- meanfun(x, a, (b + 10e-7), c )
d2 <- (d2.2 - d2.1)/10e-7
d3.1 <- meanfun(x, a, b, c)
d3.2 <- meanfun(x, a, b, (c + 10e-7) )
d3 <- (d3.2 - d3.1)/10e-7
cbind(d1, d2, d3)[notFixed]
}
## Defining the first derivative (in x=dose)
derivx <- function(x, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
meanfun <- function(x, a, b, c) {
a + (b - a) * exp (- exp(c) * x)
}
a <- as.numeric(parmMat[,1])
b <- as.numeric(parmMat[,2])
c <- as.numeric(parmMat[,3])
d1.1 <- meanfun(x, a, b, c)
d1.2 <- meanfun((x + 10e-7), a, b, c)
d1 <- (d1.2 - d1.1)/10e-7
d1
}
## Defining the ED function
## Defining the inverse function
## Defining descriptive text
text <- "Asymptotic regression model"
## Returning the function with self starter and names
returnList <- list(fct = fct, ssfct = ssfct, names = pnames,
text = text, noParm = sum(is.na(fixed)),
deriv1 = deriv1, derivx = derivx)
class(returnList) <- "drcMean"
invisible(returnList)
}
# #Growth
# set.seed(1234)
# X <- c(1, 3, 5, 7, 9, 11, 13, 20)
# plateau <- 20; init <- 5; m <- 0.3
# Ye <- asymReg.fun(X, init, m, plateau)
# epsilon <- rnorm(8, 0, 0.5)
# Y <- Ye + epsilon
# model <- drm(Y ~ X, fct = DRC.asymReg())
# plot(model, log="", main = "Asymptotic regression")
# model2 <- nls(Y ~ NLS.asymReg(X, init, m, plateau))
# model3 <- nls(Y ~ SSasymp(X, Asymp, R0, lrc))
# model4 <- drm(Y ~ X, fct = DRC.SSasymp())
# plot(model, log="", main = "Asymptotic regression")
# summary(model)
# summary(model2)
# summary(model3)
# exp(-1.0980)
# summary(model4)
#
# set.seed(1234)
# X <- c(1, 3, 5, 7, 9, 11, 13, 20)
# plateau <- 5; init <- 20; m <- -1.08
# Ye <- SSasymp(X, plateau, init, m)
# epsilon <- rnorm(8, 0, 0.5)
# Y <- Ye + epsilon
# model <- drm(Y ~ X, fct = DRC.SSasymp())
# plot(model, log="", main = "Asymptotic regression")
# model2 <- nls(Y ~ SSasymp(X, Asymp, R0, lrc))
# summary(model)
# summary(model2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.