Nothing
Code
select(df1, -expression)
Output
# A tibble: 1 x 12
statistic df p.value method effectsize estimate
<dbl> <int> <dbl> <chr> <chr> <dbl>
1 8.74 2 0.0126 Pearson's Chi-squared test Cramer's V (adj.) 0.464
conf.level conf.low conf.high conf.method conf.distribution n.obs
<dbl> <dbl> <dbl> <chr> <chr> <int>
1 0.99 0 0.937 ncp chisq 32
Code
df1[["expression"]]
Output
[[1]]
list(chi["Pearson"]^2 * "(" * 2 * ")" == "8.74073", italic(p) ==
"0.01265", widehat(italic("V"))["Cramer"] == "0.46431", CI["99%"] ~
"[" * "0.00000", "0.93683" * "]", italic("n")["obs"] == "32")
Code
select(df2, -expression)
Output
# A tibble: 1 x 12
statistic df p.value method effectsize
<dbl> <int> <dbl> <chr> <chr>
1 457. 1 2.30e-101 Pearson's Chi-squared test Cramer's V (adj.)
estimate conf.level conf.low conf.high conf.method conf.distribution n.obs
<dbl> <dbl> <dbl> <dbl> <chr> <chr> <int>
1 0.455 0.95 0.413 0.497 ncp chisq 2201
Code
df2[["expression"]]
Output
[[1]]
list(chi["Pearson"]^2 * "(" * 1 * ")" == "456.87", italic(p) ==
"2.30e-101", widehat(italic("V"))["Cramer"] == "0.46", CI["95%"] ~
"[" * "0.41", "0.50" * "]", italic("n")["obs"] == "2,201")
Code
select(df3, -expression)
Output
# A tibble: 1 x 12
statistic df p.value method effectsize estimate
<dbl> <int> <dbl> <chr> <chr> <dbl>
1 15.8 15 0.399 Pearson's Chi-squared test Cramer's V (adj.) 0.0558
conf.level conf.low conf.high conf.method conf.distribution n.obs
<dbl> <dbl> <dbl> <chr> <chr> <int>
1 0.99 0 0.252 ncp chisq 52
Code
df3[["expression"]]
Output
[[1]]
list(chi["Pearson"]^2 * "(" * 15 * ")" == "15.75", italic(p) ==
"0.40", widehat(italic("V"))["Cramer"] == "0.06", CI["99%"] ~
"[" * "0.00", "0.25" * "]", italic("n")["obs"] == "52")
Code
select(df1, -expression)
Output
# A tibble: 1 x 11
statistic df p.value method effectsize estimate
<dbl> <dbl> <dbl> <chr> <chr> <dbl>
1 13.3 1 0.000261 McNemar's Chi-squared test Cohen's g 0.333
conf.level conf.low conf.high conf.method n.obs
<dbl> <dbl> <dbl> <chr> <int>
1 0.95 0.164 0.427 binomial 100
Code
df1[["expression"]]
Output
[[1]]
list(chi["McNemar"]^2 * "(" * 1 * ")" == "13.33333", italic(p) ==
"0.00026", widehat(italic("g"))["Cohen"] == "0.33333", CI["95%"] ~
"[" * "0.16436", "0.42663" * "]", italic("n")["pairs"] ==
"100")
Code
select(df2, -expression)
Output
# A tibble: 1 x 11
statistic df p.value method effectsize estimate
<dbl> <dbl> <dbl> <chr> <chr> <dbl>
1 13.3 1 0.000261 McNemar's Chi-squared test Cohen's g 0.333
conf.level conf.low conf.high conf.method n.obs
<dbl> <dbl> <dbl> <chr> <int>
1 0.9 0.229 0.5 binomial 95
Code
df2[["expression"]]
Output
[[1]]
list(chi["McNemar"]^2 * "(" * 1 * ")" == "13.333", italic(p) ==
"2.607e-04", widehat(italic("g"))["Cohen"] == "0.333", CI["90%"] ~
"[" * "0.229", "0.500" * "]", italic("n")["pairs"] == "95")
Code
select(df1, -expression)
Output
# A tibble: 1 x 12
statistic df p.value method effectsize
<dbl> <dbl> <dbl> <chr> <chr>
1 1.12 1 0.289 Chi-squared test for given probabilities Pearson's C
estimate conf.level conf.low conf.high conf.method conf.distribution n.obs
<dbl> <dbl> <dbl> <dbl> <chr> <chr> <int>
1 0.184 0.99 0 0.541 ncp chisq 32
Code
df1[["expression"]]
Output
[[1]]
list(chi["gof"]^2 * "(" * 1 * ")" == "1.12500", italic(p) ==
"0.28884", widehat(italic("C"))["Pearson"] == "0.18429",
CI["99%"] ~ "[" * "0.00000", "0.54074" * "]", italic("n")["obs"] ==
"32")
Code
select(df2, -expression)
Output
# A tibble: 1 x 12
statistic df p.value method effectsize
<dbl> <dbl> <dbl> <chr> <chr>
1 722. 1 3.92e-159 Chi-squared test for given probabilities Pearson's C
estimate conf.level conf.low conf.high conf.method conf.distribution n.obs
<dbl> <dbl> <dbl> <dbl> <chr> <chr> <int>
1 0.497 0.95 0.474 1 ncp chisq 2201
Code
df2[["expression"]]
Output
[[1]]
list(chi["gof"]^2 * "(" * 1 * ")" == "722.45", italic(p) == "3.92e-159",
widehat(italic("C"))["Pearson"] == "0.50", CI["95%"] ~ "[" *
"0.47", "1.00" * "]", italic("n")["obs"] == "2,201")
Code
select(df3, -expression)
Output
# A tibble: 1 x 12
statistic df p.value method
<dbl> <dbl> <dbl> <chr>
1 33.8 3 0.000000223 Chi-squared test for given probabilities
effectsize estimate conf.level conf.low conf.high conf.method
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Pearson's C 0.555 0.95 0.385 0.658 ncp
conf.distribution n.obs
<chr> <int>
1 chisq 76
Code
df3[["expression"]]
Output
[[1]]
list(chi["gof"]^2 * "(" * 3 * ")" == "33.76", italic(p) == "2.23e-07",
widehat(italic("C"))["Pearson"] == "0.55", CI["95%"] ~ "[" *
"0.38", "0.66" * "]", italic("n")["obs"] == "76")
Code
select(df1, -expression)
Output
# A tibble: 1 x 3
bf10 prior.scale method
<dbl> <dbl> <chr>
1 0.247 1 Bayesian one-way contingency table analysis
Code
df1[["expression"]]
Output
[[1]]
list(log[e] * (BF["01"]) == "1.40", italic("a")["Gunel-Dickey"] ==
"1.00")
Code
select(df2, -expression)
Output
# A tibble: 1 x 3
bf10 prior.scale method
<dbl> <dbl> <chr>
1 0.579 10 Bayesian one-way contingency table analysis
Code
df2[["expression"]]
Output
[[1]]
list(log[e] * (BF["01"]) == "0.55", italic("a")["Gunel-Dickey"] ==
"10.00")
Code
df1[["expression"]]
Output
[[1]]
list(log[e] * (BF["01"]) == "-2.82", widehat(italic("V"))["Cramer"]^"posterior" ==
"0.41", CI["95%"]^ETI ~ "[" * "0.00", "0.68" * "]", italic("a")["Gunel-Dickey"] ==
"1.00")
Code
df2[["expression"]]
Output
[[1]]
list(log[e] * (BF["01"]) == "3.29", widehat(italic("V"))["Cramer"]^"posterior" ==
"0.00", CI["95%"]^ETI ~ "[" * "0.00", "0.26" * "]", italic("a")["Gunel-Dickey"] ==
"1.00")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.