tests/testthat/_snaps/oneway-anova-parametric.md

parametric anova subtitles work (without NAs)

Code
  select(df, -expression)
Output
  # A tibble: 1 x 13
    statistic    df df.error   p.value
        <dbl> <dbl>    <dbl>     <dbl>
  1      20.2     2     19.0 0.0000196
    method                                                   effectsize estimate
    <chr>                                                    <chr>         <dbl>
  1 One-way analysis of means (not assuming equal variances) Eta2          0.681
    conf.level conf.low conf.high conf.method conf.distribution n.obs
         <dbl>    <dbl>     <dbl> <chr>       <chr>             <int>
  1       0.95    0.437         1 ncp         F                    32
Code
  df[["expression"]]
Output
  [[1]]
  list(italic("F")["Welch"](2, 18.97383) == "20.24946", italic(p) == 
      "0.00002", widehat(eta["p"]^2) == "0.68097", CI["95%"] ~ 
      "[" * "0.43668", "1.00000" * "]", italic("n")["obs"] == "32")
Code
  select(df1, -expression)
Output
  # A tibble: 1 x 13
    statistic    df df.error    p.value method                    effectsize
        <dbl> <dbl>    <dbl>      <dbl> <chr>                     <chr>     
  1      22.9     2       29 0.00000107 One-way analysis of means Eta2      
    estimate conf.level conf.low conf.high conf.method conf.distribution n.obs
       <dbl>      <dbl>    <dbl>     <dbl> <chr>       <chr>             <int>
  1    0.612       0.95    0.404         1 ncp         F                    32
Code
  df1[["expression"]]
Output
  [[1]]
  list(italic("F")["Fisher"](2, 29) == "22.91139", italic(p) == 
      "1.07468e-06", widehat(eta["p"]^2) == "0.61242", CI["95%"] ~ 
      "[" * "0.40360", "1.00000" * "]", italic("n")["obs"] == "32")

parametric anova subtitles with partial omega-squared

Code
  select(df1, -expression)
Output
  # A tibble: 1 x 13
    statistic    df df.error p.value
        <dbl> <dbl>    <dbl>   <dbl>
  1      2.27     3     24.0   0.107
    method                                                   effectsize estimate
    <chr>                                                    <chr>         <dbl>
  1 One-way analysis of means (not assuming equal variances) Omega2        0.119
    conf.level conf.low conf.high conf.method conf.distribution n.obs
         <dbl>    <dbl>     <dbl> <chr>       <chr>             <int>
  1       0.95        0         1 ncp         F                    51
Code
  df1[["expression"]]
Output
  [[1]]
  list(italic("F")["Welch"](3, 24.0475) == "2.2653", italic(p) == 
      "0.1066", widehat(omega["p"]^2) == "0.1192", CI["95%"] ~ 
      "[" * "0.0000", "1.0000" * "]", italic("n")["obs"] == "51")

paired parametric anova subtitles work (without NAs)

Code
  select(df1, -expression)
Output
  # A tibble: 1 x 17
    term      sumsq sum.squares.error    df df.error meansq statistic  p.value
    <chr>     <dbl>             <dbl> <dbl>    <dbl>  <dbl>     <dbl>    <dbl>
  1 condition 1656.              318.  1.15     171.   1.86      776. 1.32e-69
    method                                              effectsize       estimate
    <chr>                                               <chr>               <dbl>
  1 ANOVA estimation for factorial designs using 'afex' Omega2 (partial)    0.707
    conf.level conf.low conf.high conf.method conf.distribution n.obs
         <dbl>    <dbl>     <dbl> <chr>       <chr>             <int>
  1       0.99    0.658         1 ncp         F                   150
Code
  df1[["expression"]]
Output
  [[1]]
  list(italic("F")["Fisher"](1.149, 171.217) == "776.318", italic(p) == 
      "1.325e-69", widehat(omega["p"]^2) == "0.707", CI["99%"] ~ 
      "[" * "0.658", "1.000" * "]", italic("n")["pairs"] == "150")


Try the statsExpressions package in your browser

Any scripts or data that you put into this service are public.

statsExpressions documentation built on May 29, 2024, 4:28 a.m.