Nothing
Code
select(df, -expression)
Output
# A tibble: 1 x 13
statistic df df.error p.value
<dbl> <dbl> <dbl> <dbl>
1 20.2 2 19.0 0.0000196
method effectsize estimate
<chr> <chr> <dbl>
1 One-way analysis of means (not assuming equal variances) Eta2 0.681
conf.level conf.low conf.high conf.method conf.distribution n.obs
<dbl> <dbl> <dbl> <chr> <chr> <int>
1 0.95 0.437 1 ncp F 32
Code
df[["expression"]]
Output
[[1]]
list(italic("F")["Welch"](2, 18.97383) == "20.24946", italic(p) ==
"0.00002", widehat(eta["p"]^2) == "0.68097", CI["95%"] ~
"[" * "0.43668", "1.00000" * "]", italic("n")["obs"] == "32")
Code
select(df1, -expression)
Output
# A tibble: 1 x 13
statistic df df.error p.value method effectsize
<dbl> <dbl> <dbl> <dbl> <chr> <chr>
1 22.9 2 29 0.00000107 One-way analysis of means Eta2
estimate conf.level conf.low conf.high conf.method conf.distribution n.obs
<dbl> <dbl> <dbl> <dbl> <chr> <chr> <int>
1 0.612 0.95 0.404 1 ncp F 32
Code
df1[["expression"]]
Output
[[1]]
list(italic("F")["Fisher"](2, 29) == "22.91139", italic(p) ==
"1.07468e-06", widehat(eta["p"]^2) == "0.61242", CI["95%"] ~
"[" * "0.40360", "1.00000" * "]", italic("n")["obs"] == "32")
Code
select(df1, -expression)
Output
# A tibble: 1 x 13
statistic df df.error p.value
<dbl> <dbl> <dbl> <dbl>
1 2.27 3 24.0 0.107
method effectsize estimate
<chr> <chr> <dbl>
1 One-way analysis of means (not assuming equal variances) Omega2 0.119
conf.level conf.low conf.high conf.method conf.distribution n.obs
<dbl> <dbl> <dbl> <chr> <chr> <int>
1 0.95 0 1 ncp F 51
Code
df1[["expression"]]
Output
[[1]]
list(italic("F")["Welch"](3, 24.0475) == "2.2653", italic(p) ==
"0.1066", widehat(omega["p"]^2) == "0.1192", CI["95%"] ~
"[" * "0.0000", "1.0000" * "]", italic("n")["obs"] == "51")
Code
select(df1, -expression)
Output
# A tibble: 1 x 17
term sumsq sum.squares.error df df.error meansq statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 condition 1656. 318. 1.15 171. 1.86 776. 1.32e-69
method effectsize estimate
<chr> <chr> <dbl>
1 ANOVA estimation for factorial designs using 'afex' Omega2 (partial) 0.707
conf.level conf.low conf.high conf.method conf.distribution n.obs
<dbl> <dbl> <dbl> <chr> <chr> <int>
1 0.99 0.658 1 ncp F 150
Code
df1[["expression"]]
Output
[[1]]
list(italic("F")["Fisher"](1.149, 171.217) == "776.318", italic(p) ==
"1.325e-69", widehat(omega["p"]^2) == "0.707", CI["99%"] ~
"[" * "0.658", "1.000" * "]", italic("n")["pairs"] == "150")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.