Nothing
Code
select(df1, -expression)
Output
# A tibble: 1 x 11
statistic df df.error p.value
<dbl> <dbl> <dbl> <dbl>
1 20.2 2 19.0 0.0000196
method
<chr>
1 A heteroscedastic one-way ANOVA for trimmed means
effectsize estimate conf.level conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl>
1 Explanatory measure of effect size 0.859 0.95 0.853 0.864
n.obs
<int>
1 32
Code
df1[["expression"]]
Output
[[1]]
list(italic("F")["trimmed-means"](2, 18.97383) == "20.24946",
italic(p) == "0.00002", widehat(xi) == "0.85858", CI["95%"] ~
"[" * "0.85268", "0.86448" * "]", italic("n")["obs"] ==
"32")
Code
select(df2, -expression)
Output
# A tibble: 1 x 11
statistic df df.error p.value
<dbl> <dbl> <dbl> <dbl>
1 0.0503 2 21.7 0.951
method
<chr>
1 A heteroscedastic one-way ANOVA for trimmed means
effectsize estimate conf.level conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl>
1 Explanatory measure of effect size 0.201 0.99 0.0872 0.754
n.obs
<int>
1 71
Code
df2[["expression"]]
Output
[[1]]
list(italic("F")["trimmed-means"](2, 21.6869) == "0.0503", italic(p) ==
"0.9511", widehat(xi) == "0.2013", CI["99%"] ~ "[" * "0.0872",
"0.7537" * "]", italic("n")["obs"] == "71")
Code
select(df1, -expression)
Output
# A tibble: 1 x 11
statistic df df.error p.value
<dbl> <dbl> <dbl> <dbl>
1 21.0 2.73 145. 1.15e-10
method
<chr>
1 A heteroscedastic one-way repeated measures ANOVA for trimmed means
effectsize estimate
<chr> <dbl>
1 Algina-Keselman-Penfield robust standardized difference average 0.664
conf.level conf.low conf.high n.obs
<dbl> <dbl> <dbl> <int>
1 0.95 0.466 0.971 88
Code
df1[["expression"]]
Output
[[1]]
list(italic("F")["trimmed-means"](2.7303, 144.7051) == "20.9752",
italic(p) == "1.1462e-10", widehat(delta)["R-avg"]^"AKP" ==
"0.6635", CI["95%"] ~ "[" * "0.4660", "0.9707" * "]",
italic("n")["pairs"] == "88")
Code
select(df2, -expression)
Output
# A tibble: 1 x 11
statistic df df.error p.value
<dbl> <dbl> <dbl> <dbl>
1 22.1 1 3 0.0182
method
<chr>
1 A heteroscedastic one-way repeated measures ANOVA for trimmed means
effectsize estimate
<chr> <dbl>
1 Algina-Keselman-Penfield robust standardized difference average -Inf
conf.level conf.low conf.high n.obs
<dbl> <dbl> <dbl> <int>
1 0.95 -Inf NaN 4
Code
df2[["expression"]]
Output
[[1]]
list(italic("F")["trimmed-means"](1, 3) == "22.09", italic(p) ==
"0.02", widehat(delta)["R-avg"]^"AKP" == "-Inf", CI["95%"] ~
"[" * "-Inf", "NA" * "]", italic("n")["pairs"] == "4")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.