Nothing
pairwise_comparisons()
works for between-subjects designCode
df1
Output
# A tibble: 6 x 6
group1 group2 p.value p.adjust.method test expression
<chr> <chr> <dbl> <chr> <chr> <list>
1 carni herbi 1 Bonferroni Student's t <language>
2 carni insecti 1 Bonferroni Student's t <language>
3 carni omni 1 Bonferroni Student's t <language>
4 herbi insecti 1 Bonferroni Student's t <language>
5 herbi omni 0.979 Bonferroni Student's t <language>
6 insecti omni 1 Bonferroni Student's t <language>
Code
df1[["expression"]]
Output
[[1]]
list(italic(p)["Bonferroni" - adj.] == "1.00")
[[2]]
list(italic(p)["Bonferroni" - adj.] == "1.00")
[[3]]
list(italic(p)["Bonferroni" - adj.] == "1.00")
[[4]]
list(italic(p)["Bonferroni" - adj.] == "1.00")
[[5]]
list(italic(p)["Bonferroni" - adj.] == "0.98")
[[6]]
list(italic(p)["Bonferroni" - adj.] == "1.00")
Code
df2
Output
# A tibble: 6 x 9
group1 group2 statistic p.value alternative distribution p.adjust.method
<chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
1 carni herbi 2.17 1 two.sided q Bonferroni
2 carni insecti -2.17 1 two.sided q Bonferroni
3 carni omni 1.10 1 two.sided q Bonferroni
4 herbi insecti -2.41 1 two.sided q Bonferroni
5 herbi omni -1.87 1 two.sided q Bonferroni
6 insecti omni 2.19 1 two.sided q Bonferroni
test expression
<chr> <list>
1 Games-Howell <language>
2 Games-Howell <language>
3 Games-Howell <language>
4 Games-Howell <language>
5 Games-Howell <language>
6 Games-Howell <language>
Code
df2[["expression"]]
Output
[[1]]
list(italic(p)["Bonferroni" - adj.] == "1.00")
[[2]]
list(italic(p)["Bonferroni" - adj.] == "1.00")
[[3]]
list(italic(p)["Bonferroni" - adj.] == "1.00")
[[4]]
list(italic(p)["Bonferroni" - adj.] == "1.00")
[[5]]
list(italic(p)["Bonferroni" - adj.] == "1.00")
[[6]]
list(italic(p)["Bonferroni" - adj.] == "1.00")
Code
df3
Output
# A tibble: 6 x 9
group1 group2 statistic p.value alternative distribution p.adjust.method
<chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
1 carni herbi 0.582 0.561 two.sided z None
2 carni insecti 1.88 0.0595 two.sided z None
3 carni omni 1.14 0.254 two.sided z None
4 herbi insecti 1.63 0.102 two.sided z None
5 herbi omni 0.717 0.474 two.sided z None
6 insecti omni 1.14 0.254 two.sided z None
test expression
<chr> <list>
1 Dunn <language>
2 Dunn <language>
3 Dunn <language>
4 Dunn <language>
5 Dunn <language>
6 Dunn <language>
Code
df3[["expression"]]
Output
[[1]]
list(italic(p)[unadj.] == "0.56")
[[2]]
list(italic(p)[unadj.] == "0.06")
[[3]]
list(italic(p)[unadj.] == "0.25")
[[4]]
list(italic(p)[unadj.] == "0.10")
[[5]]
list(italic(p)[unadj.] == "0.47")
[[6]]
list(italic(p)[unadj.] == "0.25")
Code
df4
Output
# A tibble: 6 x 10
group1 group2 estimate conf.level conf.low conf.high p.value p.adjust.method
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 carni herbi -0.0323 0.95 -0.248 0.184 0.790 FDR
2 carni insecti 0.0451 0.95 -0.0484 0.139 0.552 FDR
3 carni omni 0.00520 0.95 -0.114 0.124 0.898 FDR
4 herbi insecti 0.0774 0.95 -0.133 0.288 0.552 FDR
5 herbi omni 0.0375 0.95 -0.182 0.257 0.790 FDR
6 insecti omni -0.0399 0.95 -0.142 0.0625 0.552 FDR
test expression
<chr> <list>
1 Yuen's trimmed means <language>
2 Yuen's trimmed means <language>
3 Yuen's trimmed means <language>
4 Yuen's trimmed means <language>
5 Yuen's trimmed means <language>
6 Yuen's trimmed means <language>
Code
df4[["expression"]]
Output
[[1]]
list(italic(p)["FDR" - adj.] == "0.79")
[[2]]
list(italic(p)["FDR" - adj.] == "0.55")
[[3]]
list(italic(p)["FDR" - adj.] == "0.90")
[[4]]
list(italic(p)["FDR" - adj.] == "0.55")
[[5]]
list(italic(p)["FDR" - adj.] == "0.79")
[[6]]
list(italic(p)["FDR" - adj.] == "0.55")
Code
df5
Output
# A tibble: 3 x 6
group1 group2 p.value p.adjust.method test expression
<chr> <chr> <dbl> <chr> <chr> <list>
1 PG PG-13 0.316 Holm Student's t <language>
2 PG R 0.00283 Holm Student's t <language>
3 PG-13 R 0.00310 Holm Student's t <language>
Code
df5[["expression"]]
Output
[[1]]
list(italic(p)["Holm" - adj.] == "0.32")
[[2]]
list(italic(p)["Holm" - adj.] == "2.83e-03")
[[3]]
list(italic(p)["Holm" - adj.] == "3.10e-03")
Code
df6
Output
# A tibble: 6 x 9
group1 group2 statistic p.value alternative distribution p.adjust.method
<chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
1 carni herbi 2.17 1 two.sided q Holm
2 carni insecti -2.17 1 two.sided q Holm
3 carni omni 1.10 1 two.sided q Holm
4 herbi insecti -2.41 1 two.sided q Holm
5 herbi omni -1.87 1 two.sided q Holm
6 insecti omni 2.19 1 two.sided q Holm
test expression
<chr> <list>
1 Games-Howell <language>
2 Games-Howell <language>
3 Games-Howell <language>
4 Games-Howell <language>
5 Games-Howell <language>
6 Games-Howell <language>
Code
df6[["expression"]]
Output
[[1]]
list(italic(p)["Holm" - adj.] == "1.00")
[[2]]
list(italic(p)["Holm" - adj.] == "1.00")
[[3]]
list(italic(p)["Holm" - adj.] == "1.00")
[[4]]
list(italic(p)["Holm" - adj.] == "1.00")
[[5]]
list(italic(p)["Holm" - adj.] == "1.00")
[[6]]
list(italic(p)["Holm" - adj.] == "1.00")
Code
df1
Output
# A tibble: 1 x 9
group1 group2 statistic p.value alternative distribution p.adjust.method
<chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
1 carni omni 1.10 0.447 two.sided q None
test expression
<chr> <list>
1 Games-Howell <language>
Code
df1[["expression"]]
Output
[[1]]
list(italic(p)[unadj.] == "0.45")
Code
df
Output
# A tibble: 3 x 6
group1 group2 p.value p.adjust.method test expression
<chr> <chr> <dbl> <chr> <chr> <list>
1 setosa versicolor 1.32e-15 FDR Student's t <language>
2 setosa virginica 6.64e-32 FDR Student's t <language>
3 versicolor virginica 2.77e- 9 FDR Student's t <language>
Code
df[["expression"]]
Output
[[1]]
list(italic(p)["FDR" - adj.] == "1.32e-15")
[[2]]
list(italic(p)["FDR" - adj.] == "6.64e-32")
[[3]]
list(italic(p)["FDR" - adj.] == "2.77e-09")
pairwise_comparisons()
works for within-subjects design - NAsCode
df1
Output
# A tibble: 6 x 6
group1 group2 p.value p.adjust.method test expression
<chr> <chr> <dbl> <chr> <chr> <list>
1 HDHF HDLF 3.18e- 3 Bonferroni Student's t <language>
2 HDHF LDHF 4.21e- 1 Bonferroni Student's t <language>
3 HDHF LDLF 3.95e-12 Bonferroni Student's t <language>
4 HDLF LDHF 3.37e- 1 Bonferroni Student's t <language>
5 HDLF LDLF 7.94e- 3 Bonferroni Student's t <language>
6 LDHF LDLF 1.33e- 8 Bonferroni Student's t <language>
Code
df1[["expression"]]
Output
[[1]]
list(italic(p)["Bonferroni" - adj.] == "0.003")
[[2]]
list(italic(p)["Bonferroni" - adj.] == "0.421")
[[3]]
list(italic(p)["Bonferroni" - adj.] == "3.950e-12")
[[4]]
list(italic(p)["Bonferroni" - adj.] == "0.337")
[[5]]
list(italic(p)["Bonferroni" - adj.] == "0.008")
[[6]]
list(italic(p)["Bonferroni" - adj.] == "1.331e-08")
Code
df2
Output
# A tibble: 6 x 9
group1 group2 statistic p.value alternative distribution p.adjust.method
<chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
1 HDHF HDLF 4.78 1.44e- 5 two.sided t BY
2 HDHF LDHF 2.44 4.47e- 2 two.sided t BY
3 HDHF LDLF 8.01 5.45e-13 two.sided t BY
4 HDLF LDHF 2.34 4.96e- 2 two.sided t BY
5 HDLF LDLF 3.23 5.05e- 3 two.sided t BY
6 LDHF LDLF 5.57 4.64e- 7 two.sided t BY
test expression
<chr> <list>
1 Durbin-Conover <language>
2 Durbin-Conover <language>
3 Durbin-Conover <language>
4 Durbin-Conover <language>
5 Durbin-Conover <language>
6 Durbin-Conover <language>
Code
df2[["expression"]]
Output
[[1]]
list(italic(p)["BY" - adj.] == "1.436e-05")
[[2]]
list(italic(p)["BY" - adj.] == "0.045")
[[3]]
list(italic(p)["BY" - adj.] == "5.447e-13")
[[4]]
list(italic(p)["BY" - adj.] == "0.050")
[[5]]
list(italic(p)["BY" - adj.] == "0.005")
[[6]]
list(italic(p)["BY" - adj.] == "4.635e-07")
Code
df3
Output
# A tibble: 6 x 11
group1 group2 estimate conf.level conf.low conf.high p.value p.crit
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 HDHF HDLF 1.03 0.95 0.140 1.92 0.00999 0.0127
2 HDHF LDHF 0.454 0.95 -0.104 1.01 0.0520 0.025
3 HDHF LDLF 1.95 0.95 1.09 2.82 0.000000564 0.00851
4 HDLF LDHF -0.676 0.95 -1.61 0.256 0.0520 0.05
5 HDLF LDLF 0.889 0.95 0.0244 1.75 0.0203 0.0169
6 LDHF LDLF 1.35 0.95 0.560 2.14 0.000102 0.0102
p.adjust.method test expression
<chr> <chr> <list>
1 Hommel Yuen's trimmed means <language>
2 Hommel Yuen's trimmed means <language>
3 Hommel Yuen's trimmed means <language>
4 Hommel Yuen's trimmed means <language>
5 Hommel Yuen's trimmed means <language>
6 Hommel Yuen's trimmed means <language>
Code
df3[["expression"]]
Output
[[1]]
list(italic(p)["Hommel" - adj.] == "0.010")
[[2]]
list(italic(p)["Hommel" - adj.] == "0.052")
[[3]]
list(italic(p)["Hommel" - adj.] == "5.642e-07")
[[4]]
list(italic(p)["Hommel" - adj.] == "0.052")
[[5]]
list(italic(p)["Hommel" - adj.] == "0.020")
[[6]]
list(italic(p)["Hommel" - adj.] == "1.017e-04")
Code
df4
Output
# A tibble: 6 x 18
group1 group2 term effectsize estimate conf.level conf.low
<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
1 HDHF HDLF Difference Bayesian t-test 1.10 0.95 0.488
2 HDHF LDHF Difference Bayesian t-test 0.450 0.95 -0.0551
3 HDHF LDLF Difference Bayesian t-test 2.13 0.95 1.62
4 HDLF LDHF Difference Bayesian t-test -0.649 0.95 -1.32
5 HDLF LDLF Difference Bayesian t-test 0.976 0.95 0.380
6 LDHF LDLF Difference Bayesian t-test 1.66 0.95 1.15
conf.high pd prior.distribution prior.location prior.scale bf10
<dbl> <dbl> <chr> <dbl> <dbl> <dbl>
1 1.72 1 cauchy 0 0.707 4.16e+ 1
2 0.951 0.954 cauchy 0 0.707 5.83e- 1
3 2.63 1 cauchy 0 0.707 1.20e+10
4 0.0583 0.968 cauchy 0 0.707 6.98e- 1
5 1.60 0.999 cauchy 0 0.707 1.81e+ 1
6 2.15 1 cauchy 0 0.707 4.81e+ 6
conf.method log_e_bf10 n.obs expression test
<chr> <dbl> <int> <list> <chr>
1 ETI 3.73 88 <language> Student's t
2 ETI -0.539 88 <language> Student's t
3 ETI 23.2 88 <language> Student's t
4 ETI -0.359 88 <language> Student's t
5 ETI 2.90 88 <language> Student's t
6 ETI 15.4 88 <language> Student's t
Code
df4[["expression"]]
Output
[[1]]
list(log[e] * (BF["01"]) == "-3.73")
[[2]]
list(log[e] * (BF["01"]) == "0.54")
[[3]]
list(log[e] * (BF["01"]) == "-23.21")
[[4]]
list(log[e] * (BF["01"]) == "0.36")
[[5]]
list(log[e] * (BF["01"]) == "-2.90")
[[6]]
list(log[e] * (BF["01"]) == "-15.39")
pairwise_comparisons()
works for within-subjects design - without NAsCode
df1
Output
# A tibble: 3 x 6
group1 group2 p.value p.adjust.method test expression
<chr> <chr> <dbl> <chr> <chr> <list>
1 Wine A Wine B 0.732 None Student's t <language>
2 Wine A Wine C 0.0142 None Student's t <language>
3 Wine B Wine C 0.000675 None Student's t <language>
Code
df1[["expression"]]
Output
[[1]]
list(italic(p)[unadj.] == "0.732")
[[2]]
list(italic(p)[unadj.] == "0.014")
[[3]]
list(italic(p)[unadj.] == "6.754e-04")
Code
df2
Output
# A tibble: 3 x 9
group1 group2 statistic p.value alternative distribution p.adjust.method
<chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
1 Wine A Wine B 1.05 0.301 two.sided t None
2 Wine A Wine C 3.66 0.000691 two.sided t None
3 Wine B Wine C 2.62 0.0123 two.sided t None
test expression
<chr> <list>
1 Durbin-Conover <language>
2 Durbin-Conover <language>
3 Durbin-Conover <language>
Code
df2[["expression"]]
Output
[[1]]
list(italic(p)[unadj.] == "0.301")
[[2]]
list(italic(p)[unadj.] == "6.915e-04")
[[3]]
list(italic(p)[unadj.] == "0.012")
Code
df3
Output
# A tibble: 3 x 11
group1 group2 estimate conf.level conf.low conf.high p.value p.crit
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Wine A Wine B 0.0214 0.95 -0.0216 0.0645 0.195 0.05
2 Wine A Wine C 0.114 0.95 0.0215 0.207 0.00492 0.0169
3 Wine B Wine C 0.0821 0.95 0.00891 0.155 0.00878 0.025
p.adjust.method test expression
<chr> <chr> <list>
1 None Yuen's trimmed means <language>
2 None Yuen's trimmed means <language>
3 None Yuen's trimmed means <language>
Code
df3[["expression"]]
Output
[[1]]
list(italic(p)[unadj.] == "0.195")
[[2]]
list(italic(p)[unadj.] == "0.005")
[[3]]
list(italic(p)[unadj.] == "0.009")
Code
df4
Output
# A tibble: 3 x 18
group1 group2 term effectsize estimate conf.level conf.low
<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
1 Wine A Wine B Difference Bayesian t-test 0.00721 0.95 -0.0418
2 Wine A Wine C Difference Bayesian t-test 0.0755 0.95 0.0127
3 Wine B Wine C Difference Bayesian t-test 0.0693 0.95 0.0303
conf.high pd prior.distribution prior.location prior.scale bf10
<dbl> <dbl> <chr> <dbl> <dbl> <dbl>
1 0.0562 0.624 cauchy 0 0.707 0.235
2 0.140 0.990 cauchy 0 0.707 3.71
3 0.110 1.00 cauchy 0 0.707 50.5
conf.method log_e_bf10 n.obs expression test
<chr> <dbl> <int> <list> <chr>
1 ETI -1.45 22 <language> Student's t
2 ETI 1.31 22 <language> Student's t
3 ETI 3.92 22 <language> Student's t
Code
df4[["expression"]]
Output
[[1]]
list(log[e] * (BF["01"]) == "1.45")
[[2]]
list(log[e] * (BF["01"]) == "-1.31")
[[3]]
list(log[e] * (BF["01"]) == "-3.92")
Code
df1
Output
# A tibble: 6 x 6
group1 group2 p.value p.adjust.method test expression
<chr> <chr> <dbl> <chr> <chr> <list>
1 HDHF HDLF 2.65e- 4 None Student's t <language>
2 HDHF LDHF 3.51e- 2 None Student's t <language>
3 HDHF LDLF 3.29e-13 None Student's t <language>
4 HDLF LDHF 9.72e- 1 None Student's t <language>
5 HDLF LDLF 6.62e- 4 None Student's t <language>
6 LDHF LDLF 1.11e- 9 None Student's t <language>
Code
df1[["expression"]]
Output
[[1]]
list(italic(p)[unadj.] == "2.65e-04")
[[2]]
list(italic(p)[unadj.] == "0.04")
[[3]]
list(italic(p)[unadj.] == "3.29e-13")
[[4]]
list(italic(p)[unadj.] == "0.97")
[[5]]
list(italic(p)[unadj.] == "6.62e-04")
[[6]]
list(italic(p)[unadj.] == "1.11e-09")
Code
df2
Output
# A tibble: 6 x 6
group1 group2 p.value p.adjust.method test expression
<chr> <chr> <dbl> <chr> <chr> <list>
1 HDHF HDLF 1.00 None Student's t <language>
2 HDHF LDHF 0.965 None Student's t <language>
3 HDHF LDLF 1.00 None Student's t <language>
4 HDLF LDHF 0.0281 None Student's t <language>
5 HDLF LDLF 0.999 None Student's t <language>
6 LDHF LDLF 1.00 None Student's t <language>
Code
df2[["expression"]]
Output
[[1]]
list(italic(p)[unadj.] == "1.00")
[[2]]
list(italic(p)[unadj.] == "0.96")
[[3]]
list(italic(p)[unadj.] == "1.00")
[[4]]
list(italic(p)[unadj.] == "0.03")
[[5]]
list(italic(p)[unadj.] == "1.00")
[[6]]
list(italic(p)[unadj.] == "1.00")
Code
df3
Output
# A tibble: 3 x 6
group1 group2 p.value p.adjust.method test expression
<chr> <chr> <dbl> <chr> <chr> <list>
1 4 6 0.995 None Student's t <language>
2 4 8 1.00 None Student's t <language>
3 6 8 0.997 None Student's t <language>
Code
df3[["expression"]]
Output
[[1]]
list(italic(p)[unadj.] == "0.99")
[[2]]
list(italic(p)[unadj.] == "1.00")
[[3]]
list(italic(p)[unadj.] == "1.00")
Code
df4
Output
# A tibble: 3 x 6
group1 group2 p.value p.adjust.method test expression
<chr> <chr> <dbl> <chr> <chr> <list>
1 4 6 0.00532 None Student's t <language>
2 4 8 0.000000103 None Student's t <language>
3 6 8 0.00258 None Student's t <language>
Code
df4[["expression"]]
Output
[[1]]
list(italic(p)[unadj.] == "5.32e-03")
[[2]]
list(italic(p)[unadj.] == "1.03e-07")
[[3]]
list(italic(p)[unadj.] == "2.58e-03")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.