Nothing
Code
select(df1, -expression)
Output
# A tibble: 1 x 14
statistic df.error p.value method
<dbl> <dbl> <dbl> <chr>
1 28.7 89 0 Yuen's test on trimmed means for dependent samples
effectsize estimate conf.level
<chr> <dbl> <dbl>
1 Algina-Keselman-Penfield robust standardized difference 2.36 0.95
conf.low conf.high mu small medium large n.obs
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
1 1.96 2.61 0 0.1 0.3 0.5 150
Code
df1[["expression"]]
Output
[[1]]
list(italic("t")["Yuen"] * "(" * 89 * ")" == "28.7230", italic(p) ==
"0.0000", widehat(delta)["R"]^"AKP" == "2.3582", CI["95%"] ~
"[" * "1.9615", "2.6081" * "]", italic("n")["pairs"] == "150")
Code
select(df1, -expression)
Output
# A tibble: 1 x 14
statistic df.error p.value method
<dbl> <dbl> <dbl> <chr>
1 2.91 53 0.00528 Yuen's test on trimmed means for dependent samples
effectsize estimate conf.level
<chr> <dbl> <dbl>
1 Algina-Keselman-Penfield robust standardized difference 0.410 0.95
conf.low conf.high mu small medium large n.obs
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
1 0.238 0.611 0 0.1 0.3 0.5 90
Code
df1[["expression"]]
Output
[[1]]
list(italic("t")["Yuen"] * "(" * 53 * ")" == "2.909", italic(p) ==
"0.005", widehat(delta)["R"]^"AKP" == "0.410", CI["95%"] ~
"[" * "0.238", "0.611" * "]", italic("n")["pairs"] == "90")
Code
select(df1, -expression)
Output
# A tibble: 1 x 10
statistic df.error p.value
<dbl> <dbl> <dbl>
1 5.84 13.6 0.0000485
method
<chr>
1 Yuen's test on trimmed means for independent samples
effectsize estimate conf.level
<chr> <dbl> <dbl>
1 Algina-Keselman-Penfield robust standardized difference 2.48 0.99
conf.low conf.high n.obs
<dbl> <dbl> <int>
1 0.738 5.13 32
Code
df1[["expression"]]
Output
[[1]]
list(italic("t")["Yuen"] * "(" * 13.584 * ")" == "5.840", italic(p) ==
"4.846e-05", widehat(delta)["R"]^"AKP" == "2.482", CI["99%"] ~
"[" * "0.738", "5.128" * "]", italic("n")["obs"] == "32")
Code
select(df1, -expression)
Output
# A tibble: 1 x 10
statistic df.error p.value
<dbl> <dbl> <dbl>
1 0.452 13.8 0.658
method
<chr>
1 Yuen's test on trimmed means for independent samples
effectsize estimate conf.level
<chr> <dbl> <dbl>
1 Algina-Keselman-Penfield robust standardized difference -0.358 0.9
conf.low conf.high n.obs
<dbl> <dbl> <int>
1 -7.16 0.406 29
Code
df1[["expression"]]
Output
[[1]]
list(italic("t")["Yuen"] * "(" * 13.8476 * ")" == "0.4521", italic(p) ==
"0.6582", widehat(delta)["R"]^"AKP" == "-0.3583", CI["90%"] ~
"[" * "-7.1637", "0.4061" * "]", italic("n")["obs"] == "29")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.