Nothing
#' Simulate Data from Correlation Matrix
#'
#' @description A function to simulate data from a correlation matrix.
#' This is useful for illustrating some theoretical properties of
#' regressions when population parameters are known and set in advance.
#'
#' @name cor2data
#'
#' @param cor A correlation matrix (of class \code{matrix})
#' @param n A number of observations to simulate
#' @param seed An optional parameter to set a seed. Omitting this generates new simulations every time.
#'
#' @return \code{cor2data()} returns a data frame where all observations are simulated from a standard
#' normal distribution, but with those pre-set correlations.
#'
#' @author Steven V. Miller
#'
#'
#' @examples
#' vars <- c("control", "treat", "instr", "e")
#' Correlations <- matrix(cbind(1, 0.001, 0.001, 0.001,
#' 0.001, 1, 0.85, -0.5,
#' 0.001, 0.85, 1, 0.001,
#' 0.001, -0.5, 0.001, 1),nrow=4)
#'
#' rownames(Correlations) <- colnames(Correlations) <- vars
#'
#' cor2data(Correlations, 1000, 8675309)
#'
#' @export
#'
cor2data <- function(cor, n, seed) {
# number of observations to simulate
nobs <- n
# Cholesky decomposition
cholesky <- t(chol(cor))
nvars <- dim(cholesky)[1]
if (missing(seed)) {
} else {
set.seed(seed)
}
# Random variables that follow the correlation matrix
rdata <- matrix(rnorm(nvars * nobs, 0, 1), nrow = nvars, ncol = nobs)
xmat <- cholesky %*% rdata
# Transpose, convert to data, then tbl_df() require(tidyverse)
dat <- t(xmat)
dat <- as.data.frame(dat)
return(dat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.