set.seed(0) library("stokes") knitr::opts_chunk$set(echo = TRUE) options(rmarkdown.html_vignette.check_title = FALSE)
knitr::include_graphics(system.file("help/figures/stokes.png", package = "stokes"))
dx <- d(1) dy <- d(2) dz <- d(3)
To cite the stokes
package in publications, please use
@hankin2022_stokes. Convenience objects dx
, dy
, and dz
,
corresponding to elementary differential forms, are discussed here
(basis vectors $e_1$, $e_2$, $e_2$ are discussed in vignette
ex.Rmd
).
@spivak1965, in a memorable passage, states:
Fields and forms
If $f\colon\mathbb{R}^n\longrightarrow\mathbb{R}$ is differentiable, then $Df(p)\in\Lambda^1(\mathbb{R}^n)$. By a minor modification we therefore obtain a $1$-form $\mathrm{d}f$, defined by $$\mathrm{d}f(p)(v_p)=Df(p)(v).$$ Let us consider in particular the $1$-forms $\mathrm{d}\pi^i$ ^[Spivak introduces the $\pi^i$ notation on page 11: "if $\pi\colon\mathbb{R}^n\longrightarrow\mathbb{R}^n$ is the identity function, $\pi(x)=x$, then [its components are] $\pi^i(x)=x^i$; the function $\pi^i$ is called the $i^\mathrm{th}$ *projection function*"]. It is customary to let $x^i$ denote the _function_ $\pi^i$ (on $\mathbb{R}^3$ we often denote $x^1$, $x^2$, and $x^3$ by $x$, $y$, and $z$) $\ldots$ Since $\mathrm{d}x^i(p)(v_p)=\mathrm{d}\pi^i(p)(v_p)=D\pi^i(p)(v)=v^i$, we see that $\mathrm{d}x^1(p),\ldots,\mathrm{d}x^n(p)$ is just the dual basis to $(e_1)_p,\ldots, (e_n)_p$.
- Michael Spivak, 1969 (Calculus on Manifolds, Perseus books). Page 89
Spivak goes on to observe that every $k$-form $\omega$ can be written
$\omega=\sum_{i_1 < \cdots < i_k}\omega_{i_1,\ldots,
i_k}\mathrm{d}x^{i_1}\wedge\cdots\wedge\mathrm{d}x^{i_k}$. If working
in $\mathbb{R}^3$, we have three elementary forms $\mathrm{d}x$,
$\mathrm{d}y$, and $\mathrm{d}z$; in the package we have the
pre-defined objects dx
, dy
, and dz
. These are convenient for
reproducing textbook results.
We conceptualise dx
as "picking out" the $x$-component of a 3-vector
and similarly for dy
and dz
. Recall that
$\mathrm{d}x\colon\mathbb{R}^3\longrightarrow\mathbb{R}$ and we have
$$ dx\begin{pmatrix}u_1\u_2\u_3\end{pmatrix} = u_1\qquad dy\begin{pmatrix}u_1\u_2\u_3\end{pmatrix} = u_2\qquad dz\begin{pmatrix}u_1\u_2\u_3\end{pmatrix} = u_3. $$
Noting that $1$-forms are a vector space, we have in general
$$(a\cdot\mathrm{d}x + b\cdot\mathrm{d}y +c\cdot\mathrm{d}z) \begin{pmatrix}u_1\u_2\u_3\end{pmatrix} = au_1+bu_2+cu_3 $$
Numerically:
v <- c(2,3,7) c(as.function(dx)(v),as.function(dx+dy)(v),as.function(dx+100*dz)(v))
As Spivak says, dx
, dy
and dz
are conjugate to $e_1,e_2,e_3$ and
these are defined using function e()
. In this case it is safer to
pass n=3
to function e()
in order to specify that we are working
in $\mathbb{R}^3$.
e(1,3) e(2,3) e(3,3)
We will now verify numerically that dx
, dy
and dz
are indeed
conjugate to $e_1,e_2,e_3$, but to do this we will define an
orthonormal set of vectors $u,v,w$:
u <- e(1,3) v <- e(2,3) w <- e(3,3) matrix(c( as.function(dx)(u), as.function(dx)(v), as.function(dx)(w), as.function(dy)(u), as.function(dy)(v), as.function(dy)(w), as.function(dz)(u), as.function(dz)(v), as.function(dz)(w) ),3,3)
Above we see the conjugacy clearly [obtaining $I_3$ as expected].
The elementary forms may be combined with a wedge product. We note that $\mathrm{d}x\wedge\mathrm{d}y\colon\left(\mathbb{R}^3\right)^2\longrightarrow\mathbb{R}$ and, for example,
$$ (\mathrm{d}x\wedge\mathrm{d}y)\left( \begin{pmatrix}u_1\u_2\u_3\end{pmatrix}, \begin{pmatrix}v_1\v_2\v_3\end{pmatrix} \right) = \det\begin{pmatrix}u_1&v_1\u_2&v_2\end{pmatrix} $$
and
$$ (\mathrm{d}x\wedge\mathrm{d}y\wedge\mathrm{d}z) \left( \begin{pmatrix}u_1\u_2\u_3\end{pmatrix}, \begin{pmatrix}v_1\v_2\v_3\end{pmatrix}, \begin{pmatrix}w_1\w_2\w_3\end{pmatrix} \right) = \det\begin{pmatrix}u_1&v_1&w_1\u_2&v_2&w_2\u_3&v_3&w_3\end{pmatrix} $$
Numerically:
as.function(dx ^ dy)(cbind(c(2,3,5),c(4,1,2)))
Above we see the package correctly giving $\det\begin{pmatrix}2&4\3&1\end{pmatrix}=2-12=-10$.
Here I give some illustrations of the package print method.
dx
This is somewhat opaque and difficult to understand. It is easier to start with a more complicated example: take $X=\mathrm{d}x\wedge\mathrm{d}y -7\mathrm{d}x\wedge\mathrm{d}z + 3\mathrm{d}y\wedge\mathrm{d}z$:
(X <- dx^dy -7*dx^dz + 3*dy^dz)
We see that X
has three rows for the three elementary components.
Taking the row with coefficient $-7$ [which would be
$-7\mathrm{d}x\wedge\mathrm{d}z$], this maps
$\left(\mathbb{R}^3\right)^2$ to $\mathbb{R}$ and we have
$$(-7\mathrm{d}x\wedge\mathrm{d}z)\left(\begin{pmatrix} u_1\u_2\u_3\end{pmatrix}, \begin{pmatrix}v_1\v_2\v_3\end{pmatrix}\right)= -7\det\begin{pmatrix}u_1&v_1\u_3&v_3\end{pmatrix} $$
The other two rows would be
$$(3\mathrm{d}y\wedge\mathrm{d}z)\left( \begin{pmatrix}u_1\u_2\u_3\end{pmatrix}, \begin{pmatrix}v_1\v_2\v_3\end{pmatrix} \right) = 3\det\begin{pmatrix}u_2&v_2\u_3&v_3\end{pmatrix}$$
and
$$(1\mathrm{d}x\wedge\mathrm{d}y)\left( \begin{pmatrix}u_1\u_2\u_3\end{pmatrix}, \begin{pmatrix}v_1\v_2\v_3\end{pmatrix} \right) = \det\begin{pmatrix}u_1&v_1\u_2&v_2\end{pmatrix} $$
Thus form $X$ would be, by linearity
$$ X\left( \begin{pmatrix}u_1\u_2\u_3\end{pmatrix}, \begin{pmatrix}v_1\v_2\v_3\end{pmatrix} \right) = -7\det\begin{pmatrix}u_1&v_1\u_3&v_3\end{pmatrix} +3\det\begin{pmatrix}u_2&v_2\u_3&v_3\end{pmatrix} +\det\begin{pmatrix}u_1&v_1\u_2&v_2\end{pmatrix}. $$
We might want to verify that $\mathrm{d}x\wedge\mathrm{d}y=-\mathrm{d}y\wedge\mathrm{d}x$:
dx ^ dy == -dy ^ dx
The print method is configurable and can display kforms in symbolic
form. For working with dx dy dz
we may set option
kform_symbolic_print
to dx
:
options(kform_symbolic_print = 'dx')
Then the results of calculations are more natural:
dx dx^dy + 56*dy^dz
However, this setting can be confusing if we work with $\mathrm{d}x^i,i>3$, for the print method runs out of alphabet:
rform()
Above, we see the use of NA
because there is no defined symbol.
Function hodge()
returns the Hodge dual:
hodge(dx^dy + 13*dy^dz)
Note that calling hodge(dx)
can be confusing:
hodge(dx)
This returns a scalar because dx
is interpreted as a one-form on
one-dimensional space, which is a scalar form. One usually wants the
result in three dimensions:
hodge(dx,3)
This is further discussed in the dovs
vignette.
Package function d()
will create elementary one-forms but it is
easier to interpret the output if we restore the default print method
options(kform_symbolic_print = NULL) d(8)
Following lines create dx.rda
, residing in the data/
directory of
the package.
save(dx, dy, dz, file="dx.rda")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.