inner: Inner product operator

innerR Documentation

Inner product operator

Description

The inner product

Usage

inner(M)

Arguments

M

square matrix

Details

The inner product of two vectors \mathbf{x} and \mathbf{y} is usually written \left\langle\mathbf{x},\mathbf{y}\right\rangle or \mathbf{x}\cdot\mathbf{y}, but the most general form would be \mathbf{x}^TM\mathbf{y} where M is a matrix. Noting that inner products are multilinear, that is \left\langle\mathbf{x},a\mathbf{y}+b\mathbf{z}\right\rangle=a\left\langle\mathbf{x},\mathbf{y}\right\rangle+b\left\langle\mathbf{x},\mathbf{z}\right\rangle and \left\langle a\mathbf{x}+b\mathbf{y},\mathbf{z}\right\rangle=a\left\langle\mathbf{x},\mathbf{z}\right\rangle+b\left\langle\mathbf{y},\mathbf{z}\right\rangle, we see that the inner product is indeed a multilinear map, that is, a tensor.

Given a square matrix M, function inner(M) returns the 2-form that maps \mathbf{x},\mathbf{y} to \mathbf{x}^TM\mathbf{y}. Non-square matrices are effectively padded with zeros.

A short vignette is provided with the package: type vignette("inner") at the commandline.

Value

Returns a k-tensor, an inner product

Author(s)

Robin K. S. Hankin

See Also

kform

Examples


inner(diag(7))
inner(matrix(1:9,3,3))

## Compare the following two:
Alt(inner(matrix(1:9,3,3)))      # An alternating k tensor
as.kform(inner(matrix(1:9,3,3))) # Same thing coerced to a kform

f <- as.function(inner(diag(7)))
X <- matrix(rnorm(14),ncol=2)  # random element of (R^7)^2
f(X) - sum(X[,1]*X[,2]) # zero to numerical precision

## verify positive-definiteness:
g <- as.function(inner(crossprod(matrix(rnorm(56),8,7))))
stopifnot(g(kronecker(rnorm(7),t(c(1,1))))>0)


stokes documentation built on June 22, 2024, 11:56 a.m.