| kinner | R Documentation |
Given two k-forms \alpha and \beta,
return the inner product
\left\langle\alpha,\beta\right\rangle. Here our
underlying vector space V is \mathcal{R}^n.
The inner product is a symmetric bilinear form defined in two stages.
First, we specify its behaviour on decomposable k-forms
\alpha=\alpha_1\wedge\cdots\wedge\alpha_k and
\beta=\beta_1\wedge\cdots\wedge\beta_k as
\left\langle\alpha,\beta\right\rangle=\det\left(
\left\langle\alpha_i,\beta_j\right\rangle_{1\leq i,j\leq n}\right)
and secondly, we extend to the whole of \Lambda^k(V)
through linearity.
kinner(o1,o2,M)
o1, o2 |
Objects of class |
M |
Matrix |
Returns a real number
There is a vignette available: type vignette("kinner") at
the command line.
Robin K. S. Hankin
hodge
a <- (2*dx)^(3*dy)
b <- (5*dx)^(7*dy)
kinner(a,b)
det(matrix(c(2*5,0,0,3*7),2,2)) # mathematically identical, slight numerical mismatch
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.