| DSOutlier | R Documentation |
The abstract class for all data stream outlier detectors. Cannot be instantiated. Some DSC implementations also implement outlier/noise detection.
DSOutlier(...)
... |
further arguments. |
plot() has an extra logical argument to specify if outliers should be plotted
as red crosses.
Michael Hahsler
Other DST:
DSAggregate(),
DSC(),
DSClassifier(),
DSRegressor(),
DST(),
DST_SlidingWindow(),
DST_WriteStream(),
evaluate,
predict(),
stream_pipeline,
update()
Other DSOutlier:
DSC_DBSTREAM(),
DSC_DStream()
DSOutlier()
#' @examples
set.seed(1000)
stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.1, noise_separation = 5)
outlier_detector <- DSOutlier_DBSTREAM(r = .05, outlier_multiplier = 2)
update(outlier_detector, stream, 500)
outlier_detector
points <- get_points(stream, 20)
points
# Outliers are predicted as class NA
predict(outlier_detector, points)
# Plot new points from the stream. Predicted outliers are marked with a red x.
plot(outlier_detector, stream)
evaluate_static(outlier_detector, stream, measure =
c("noiseActual", "noisePredicted", "noisePrecision", "outlierJaccard"))
# use a different detector
outlier_detector2 <- DSOutlier_DStream(gridsize = .05, Cl = 0.5, outlier_multiplier = 2)
update(outlier_detector2, stream, 500)
plot(outlier_detector2, stream)
evaluate_static(outlier_detector2, stream, measure =
c("noiseActual", "noisePredicted", "noisePrecision", "outlierJaccard"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.