Description Usage Arguments Details Value Author(s) References Examples
summary summarizes the output from subtype.
1 |
object |
the output from subtype |
... |
criterion for filtering out uninteresting cases |
summary provides a measure based on FDR and its p-value for assessing the subtypes.
NFDR01 : see the reference
Andrey Alexeyenko, Woojoo Lee (maintainer:lwj221@gmail.com) and Yudi Pawitan
Alexeyenko, A. et al. (2011) Estimation of false discovery rate in a heterogeneous population.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
set.seed(1234)
p<-100 #num.variables
n1<-5 #number of sample in population 1
n2<-5 #num.samples from population 2
group<-c(rep(1,length.out=n1),rep(2,length.out=n2))
data<-matrix(rnorm((n1+n2)*p),(n1+n2),p)
############################
dimnames(data)[[1]]<-as.character(paste("P",runif(nrow(data),0,1),sep="")) ### making row names
dimnames(data)[[2]]<-as.character(paste("G",runif(ncol(data),0,1),sep="")) ### making column names
### The following procedure takes ~ 1 minute.
A=subtype(
GEset = t(data),
outcomeLabels = group,
Npermutes = 2,
Nchunks = 5,
NclustersASet = 3,
seed=1234
)
summary(A,f.out=0) ### f.out can be used for filtering out uninteresting subtypes. e.g. if f.out=2, we ignore subtypes having N01_0<=2.
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.