make.calfun | R Documentation |
Create calibration metric for use in calibrate
. The
function F
is the link function described in section 2 of
Deville et al. To create a new calibration metric, specify F-1
and its
derivative. The package provides cal.linear
, cal.raking
,
cal.logit
, which are standard, and cal.sinh
from the
CALMAR2
macro, for which F
is the derivative of the inverse hyperbolic
sine.
make.calfun(Fm1, dF, name)
Fm1 |
Function |
dF |
Derivative of |
name |
Character string to use as name |
An object of class "calfun"
Deville J-C, Sarndal C-E, Sautory O (1993) Generalized Raking Procedures in Survey Sampling. JASA 88:1013-1020
Deville J-C, Sarndal C-E (1992) Calibration Estimators in Survey Sampling. JASA 87: 376-382
calibrate
str(cal.linear)
cal.linear$Fm1
cal.linear$dF
hellinger <- make.calfun(Fm1=function(u, bounds) ((1-u/2)^-2)-1,
dF= function(u, bounds) (1-u/2)^-3 ,
name="hellinger distance")
hellinger
data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
svymean(~api00,calibrate(dclus1, ~api99, pop=c(6194, 3914069),
calfun=hellinger))
svymean(~api00,calibrate(dclus1, ~api99, pop=c(6194, 3914069),
calfun=cal.linear))
svymean(~api00,calibrate(dclus1, ~api99, pop=c(6194,3914069),
calfun=cal.raking))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.