Nothing
#' Tidying methods for HoltWinters modeling of time series
#'
#' These methods tidy `HoltWinters` models of univariate time
#' series.
#'
#' @param x An object of class "HoltWinters"
#' @param data Used with `sw_augment` only.
#' `NULL` by default which simply returns augmented columns only.
#' User can supply the original data, which returns the data + augmented columns.
#' @param rename_index Used with `sw_augment` only.
#' A string representing the name of the index generated.
#' @param timetk_idx Used with `sw_augment` and `sw_tidy_decomp`.
#' When `TRUE`, uses a timetk index (irregular, typically date or datetime) if present.
#' @param ... Additional parameters (not used)
#'
#'
#' @seealso [HoltWinters()]
#'
#' @examples
#' library(dplyr)
#' library(forecast)
#' library(sweep)
#'
#' fit_hw <- USAccDeaths %>%
#' stats::HoltWinters()
#'
#' sw_tidy(fit_hw)
#' sw_glance(fit_hw)
#' sw_augment(fit_hw)
#' sw_tidy_decomp(fit_hw)
#'
#' @name tidiers_HoltWinters
NULL
#' @rdname tidiers_HoltWinters
#'
#'
#' @return
#' __`sw_tidy()`__ returns one row for each model parameter,
#' with two columns:
#' * `term`: The various parameters (alpha, beta, gamma, and coefficients)
#' * `estimate`: The estimated parameter value
#'
#'
#' @export
sw_tidy.HoltWinters <- function(x, ...) {
terms <- c("alpha", "beta", "gamma", names(stats::coef(x)))
estimates <- c(x$alpha, x$beta, x$gamma, stats::coef(x))
ret <- tibble::tibble(term = terms,
estimate = estimates)
return(ret)
}
#' @rdname tidiers_HoltWinters
#'
#' @return
#' __`sw_glance()`__ returns one row with the following columns:
#' * `model.desc`: A description of the model
#' * `sigma`: The square root of the estimated residual variance
#' * `logLik`: The data's log-likelihood under the model
#' * `AIC`: The Akaike Information Criterion
#' * `BIC`: The Bayesian Information Criterion (`NA` for bats / tbats)
#' * `ME`: Mean error
#' * `RMSE`: Root mean squared error
#' * `MAE`: Mean absolute error
#' * `MPE`: Mean percentage error
#' * `MAPE`: Mean absolute percentage error
#' * `MASE`: Mean absolute scaled error
#' * `ACF1`: Autocorrelation of errors at lag 1
#'
#' @export
sw_glance.HoltWinters <- function(x, ...) {
# Model description
ret_1 <- tibble::tibble(model.desc = "HoltWinters")
# Summary statistics
ret_2 <- tibble::tibble(sigma = sqrt(x$SSE),
logLik = NA,
AIC = NA,
BIC = NA)
# forecast accuracy
ret_3 <- tibble::as_tibble(forecast::accuracy(
forecast::forecast(x)
))
ret <- dplyr::bind_cols(ret_1, ret_2, ret_3)
return(ret)
}
#' @rdname tidiers_HoltWinters
#'
#' @return
#' __`sw_augment()`__ returns a tibble with the following time series attributes:
#' * `index`: An index is either attempted to be extracted from the model or
#' a sequential index is created for plotting purposes
#' * `.actual`: The original time series
#' * `.fitted`: The fitted values from the model
#' * `.resid`: The residual values from the model
#'
#' @export
sw_augment.HoltWinters <- function(x, data = NULL, rename_index = "index", timetk_idx = FALSE, ...) {
# Check timetk_idx
if (timetk_idx) {
if (!has_timetk_idx(x)) {
warning("Object has no timetk index. Using default index.")
timetk_idx = FALSE
}
}
# Convert model to tibble
ret <- tk_tbl(cbind(.actual = x$x, .fitted = x$fitted[,1]),
rename_index = rename_index, silent = TRUE)
ret <- ret %>%
dplyr::mutate(.resid = .actual - .fitted)
# Apply timetk index if selected
if (timetk_idx) {
idx <- tk_index(x, timetk_idx = TRUE)
ret[, rename_index] <- idx
}
# Augment columns if necessary
ret <- sw_augment_columns(ret, data, rename_index, timetk_idx)
return(ret)
}
#' @rdname tidiers_HoltWinters
#'
#' @return
#' __`sw_tidy_decomp()`__ returns a tibble with the following time series attributes:
#' * `index`: An index is either attempted to be extracted from the model or
#' a sequential index is created for plotting purposes
#' * `observed`: The original time series
#' * `season`: The seasonal component
#' * `trend`: The trend component
#' * `remainder`: observed - (season + trend)
#' * `seasadj`: observed - season (or trend + remainder)
#'
#' @export
sw_tidy_decomp.HoltWinters <- function(x, timetk_idx = FALSE, rename_index = "index", ...) {
# Check timetk_idx
if (timetk_idx) {
if (!has_timetk_idx(x)) {
warning("Object has no timetk index. Using default index.")
timetk_idx = FALSE
}
}
# Get tibble from HoltWinters model
ret <- cbind(observed = x$x,
season = x$fitted[,"season"],
trend = x$fitted[,"trend"])
# Coerce to tibble
ret <- tk_tbl(ret, preserve_index = TRUE, rename_index, silent = TRUE)
ret <- ret %>%
dplyr::mutate(remainder = observed - season - trend,
seasadj = trend + remainder)
# Apply timetk index if selected
if (timetk_idx) {
idx <- tk_index(x, timetk_idx = TRUE)
if (nrow(ret) != length(idx)) ret <- ret[(nrow(ret) - length(idx) + 1):nrow(ret),]
ret[, rename_index] <- idx
}
# Index using sw_augment_columns() with data = NULL
ret <- sw_augment_columns(ret, data = NULL, rename_index = rename_index, timetk_idx = timetk_idx)
return(ret)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.