alean | R Documentation |
Assumption lean inference via cross-fitting (Double ML). See <doi:10.1111/rssb.12504
alean(
response_model,
exposure_model,
data,
link = "identity",
g_model,
nfolds = 1,
silent = FALSE,
mc.cores,
...
)
response_model |
formula or ml_model object (formula => glm) |
exposure_model |
model for the exposure |
data |
data.frame |
link |
Link function (g) |
g_model |
Model for |
nfolds |
Number of folds |
silent |
supress all messages and progressbars |
mc.cores |
mc.cores Optional number of cores. parallel::mcmapply used instead of future |
... |
additional arguments to future.apply::future_mapply |
Let Y
be the response variable, A
the exposure and W
covariates. The target parameter is:
\Psi(P) = \frac{E(Cov[A,
g\{E(Y|A,W)\}\mid W])} {E\{Var(A\mid W)\}}
The response_model
is the model for E(Y|A,W)
, and
exposure_model
is the model for E(A|W)
.
link
specifies g
.
alean.targeted object
Klaus Kähler Holst
sim1 <- function(n, family=gaussian(), ...) {
m <- lvm() |>
distribution(~ y, binomial.lvm()) |>
regression('a', value=function(l) l) |>
regression('y', value=function(a,l) a + l)
if (family$family=="binomial")
distribution(m, ~a) <- binomial.lvm()
sim(m, n)
}
library(splines)
f <- binomial()
d <- sim1(1e4, family=f)
e <- alean(response_model=ML(y ~ a + bs(l, df=3), family=binomial),
exposure_model=ML(a ~ bs(l, df=3), family=f),
data=d,
link = "logit", mc.cores=1, nfolds=1)
e
e <- alean(response_model=ML(y ~ a + l, family=binomial),
exposure_model=ML(a ~ l),
data=d,
link = "logit", mc.cores=1, nfolds=1)
e
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.