targeted-package: targeted: Targeted Inference

targeted-packageR Documentation

targeted: Targeted Inference

Description

logo

Various methods for targeted and semiparametric inference including augmented inverse probability weighted (AIPW) estimators for missing data and causal inference (Bang and Robins (2005) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1541-0420.2005.00377.x")}), variable importance and conditional average treatment effects (CATE) (van der Laan (2006) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2202/1557-4679.1008")}), estimators for risk differences and relative risks (Richardson et al. (2017) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2016.1192546")}), assumption lean inference for generalized linear model parameters (Vansteelandt et al. (2022) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/rssb.12504")}).

Author(s)

Maintainer: Klaus K. Holst klaus@holst.it

Authors:

Other contributors:

Klaus K. Holst (Maintainer) klaus@holst.it

References

Bang & Robins (2005) Doubly Robust Estimation in Missing Data and Causal Inference Models, Biometrics.

Vansteelandt & Dukes (2022) Assumption-lean inference for generalised linear model parameters, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

Thomas S. Richardson, James M. Robins & Linbo Wang (2017) On Modeling and Estimation for the Relative Risk and Risk Difference, Journal of the American Statistical Association.

Mark J. van der Laan (2006) Statistical Inference for Variable Importance, The International Journal of Biostatistics.

See Also

Useful links:

Examples

## Not run: 
example(riskreg)
example(cate)
example(ate)
example(calibration)

## End(Not run)

targeted documentation built on Jan. 12, 2026, 9:08 a.m.