View source: R/truncatedscore.R
| estimate_truncatedscore | R Documentation |
Let Y denote the clinical outcome, A the binary treatment
variable, X baseline covariates, T the failure time,
and epsilon=1,2 the cause of failure.
The following are our two target parameters
E(Y|T>t, A=1)- E(Y|T>t, A=0)
P(T<t,\epsilon=1|A=1)- P(T<t,\epsilon=1|A=0)
estimate_truncatedscore(
data,
mod.y,
mod.r,
mod.a,
mod.event,
time,
cause = NULL,
cens.code = 0,
naive = FALSE,
control = list(),
...
)
data |
(data.frame) |
mod.y |
(formula or learner) Model for clinical outcome given T>time. Using a formula specifies a glm with an identity link (see example). |
mod.r |
(formula or learner) Model for missing data mechanism for clinical outcome at T=time. Using a formula specifies a glm with a log link. |
mod.a |
(formula or learner) Treatment model (in RCT should just be 'a ~ 1'). Using a formula specifies a glm with a log link. |
mod.event |
(formula) Model for time-to-event process ('Event(time,status) ~ x'). |
time |
(numeric) Landmark time. |
cause |
(integer) Primary event (in the 'status' variable of the 'Event' statement). |
cens.code |
(integer) Censoring code. |
naive |
(logical) If TRUE, the unadjusted estimates ignoring baseline covariates is returned as the attribute 'naive'. |
control |
(list) optimization routine parameters. |
... |
Additional arguments passed to mets::binregATE. |
lava::estimate.default object
Klaus Kähler Holst
data(truncatedscore)
mod1 <- learner_glm(y ~ a * (x1 + x2))
mod2 <- learner_glm(r ~ a * (x1 + x2), family = binomial)
a <- estimate_truncatedscore(
data = truncatedscore,
mod.y = mod1,
mod.r = mod2,
mod.a = a ~ 1,
mod.event = mets::Event(time, status) ~ x1+x2,
time = 2
)
s <- summary(a, noninf.t = -0.1)
print(s)
parameter(s)
# the above is equivalent to
# a <- estimate_truncatedscore(
# data = truncatedscore,
# mod.y = y ~ a * (x1 + x2),
# mod.r = r ~ a * (x1 + x2),
# mod.a = a ~ 1,
# mod.event = mets::Event(time, status) ~ x1+x2,
# time = 2
# )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.