| cate_link | R Documentation | 
Conditional average treatment effect estimation via Double Machine Learning
cate_link(
  treatment,
  link = "identity",
  response_model,
  propensity_model,
  importance_model,
  contrast = c(1, 0),
  data,
  nfolds = 5,
  type = "dml1",
  ...
)
| treatment | formula specifying treatment and variables to condition on | 
| link | Link function | 
| response_model | SL object | 
| propensity_model | SL object | 
| importance_model | SL object | 
| contrast | treatment contrast (default 1 vs 0) | 
| data | data.frame | 
| nfolds | Number of folds | 
| type | 'dml1' or 'dml2' | 
| ... | additional arguments to SuperLearner | 
cate.targeted object
Klaus Kähler Holst & Andreas Nordland
# Example 1:
sim1 <- function(n=1e4,
                 seed=NULL,
                 return_model=FALSE, ...){
suppressPackageStartupMessages(require("lava"))
if (!is.null(seed)) set.seed(seed)
m <- lava::lvm()
distribution(m, ~x) <- gaussian.lvm()
distribution(m, ~v) <- gaussian.lvm(mean = 10)
distribution(m, ~a) <- binomial.lvm("logit")
regression(m, "a") <- function(v, x){.1*v + x}
distribution(m, "y") <- gaussian.lvm()
regression(m, "y") <- function(a, v, x){v+x+a*x+a*v*v}
if (return_model) return(m)
lava::sim(m, n = n)
}
if (require("SuperLearner",quietly=TRUE)) {
  d <- sim1(n = 1e3, seed = 1)
  e <- cate_link(data=d,
           type = "dml2",
           treatment = a ~ v,
           response_model = y~ a*(x + v + I(v^2)),
           importance_model = SL(D_ ~ v + I(v^2)),
           nfolds = 10)
  summary(e) # the true parameters are c(1,1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.