ml_model | R Documentation |
Provides standardized estimation and prediction methods
info
Optional information/name of the model
formals
List with formal arguments of estimation and prediction functions
formula
Formula specifying response and design matrix
args
additional arguments specified during initialization
fit
Active binding returning estimated model object
new()
Create a new prediction model object
ml_model$new( formula = NULL, estimate, predict = stats::predict, predict.args = NULL, info = NULL, specials, response.arg = "y", x.arg = "x", ... )
formula
formula specifying outcome and design matrix
estimate
function for fitting the model (must be a function response, 'y', and design matrix, 'x'. Alternatively, a function with a single 'formula' argument)
predict
prediction function (must be a function of model object, 'object', and new design matrix, 'newdata')
predict.args
optional arguments to prediction function
info
optional description of the model
specials
optional additional terms (weights, offset, id, subset, ...) passed to 'estimate'
response.arg
name of response argument
x.arg
name of design matrix argument
...
optional arguments to fitting function
estimate()
Estimation method
ml_model$estimate(data, ..., store = TRUE)
data
data.frame
...
Additional arguments to estimation method
store
Logical determining if estimated model should be stored inside the class.
predict()
Prediction method
ml_model$predict(newdata, ..., object = NULL)
newdata
data.frame
...
Additional arguments to prediction method
object
Optional model fit object
update()
Update formula
ml_model$update(formula, ...)
formula
formula or character which defines the new response
...
Additional arguments to lower level functions
print()
Print method
ml_model$print(...)
...
Additional arguments to lower level functions
response()
Extract response from data
ml_model$response(data, ...)
data
data.frame
...
additional arguments to 'design'
design()
Extract design matrix (features) from data
ml_model$design(data, ...)
data
data.frame
...
additional arguments to 'design'
opt()
Get options
ml_model$opt(arg, ...)
arg
name of option to get value of
...
additional arguments to lower level functions
clone()
The objects of this class are cloneable with this method.
ml_model$clone(deep = FALSE)
deep
Whether to make a deep clone.
Klaus Kähler Holst
data(iris)
rf <- function(formula, ...)
ml_model$new(formula, info="grf::probability_forest",
estimate=function(x,y, ...) grf::probability_forest(X=x, Y=y, ...),
predict=function(object, newdata)
predict(object, newdata)$predictions, ...)
args <- expand.list(num.trees=c(100,200), mtry=1:3,
formula=c(Species ~ ., Species ~ Sepal.Length + Sepal.Width))
models <- lapply(args, function(par) do.call(rf, par))
x <- models[[1]]$clone()
x$estimate(iris)
predict(x, newdata=head(iris))
# Reduce Ex. timing
a <- targeted::cv(models, data=iris)
cbind(coef(a), attr(args, "table"))
ff <- ml_model$new(estimate=function(y,x) lm.fit(x=x, y=y),
predict=function(object, newdata) newdata%*%object$coefficients)
## tmp <- ff$estimate(y, x=x)
## ff$predict(x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.