crr | R Documentation |
Conditional Relative Risk estimation via Double Machine Learning
crr(
treatment,
response_model,
propensity_model,
importance_model,
contrast = c(1, 0),
data,
nfolds = 5,
type = "dml1",
...
)
treatment |
formula specifying treatment and variables to condition on |
response_model |
SL object |
propensity_model |
SL object |
importance_model |
SL object |
contrast |
treatment contrast (default 1 vs 0) |
data |
data.frame |
nfolds |
Number of folds |
type |
'dml1' or 'dml2' |
... |
additional arguments to SuperLearner |
cate.targeted object
Klaus Kähler Holst & Andreas Nordland
sim1 <- function(n=1e4,
seed=NULL,
return_model=FALSE, ...){
suppressPackageStartupMessages(require("lava"))
if (!is.null(seed)) set.seed(seed)
m <- lava::lvm()
distribution(m, ~x) <- gaussian.lvm()
distribution(m, ~v) <- gaussian.lvm(mean = 10)
distribution(m, ~a) <- binomial.lvm("logit")
regression(m, "a") <- function(v, x){.1*v + x}
distribution(m, "y") <- gaussian.lvm()
regression(m, "y") <- function(a, v, x){v+x+a*x+a*v*v}
if (return_model) return(m)
lava::sim(m, n = n)
}
d <- sim1(n = 2e3, seed = 1)
if (require("SuperLearner",quietly=TRUE)) {
e <- crr(data=d,
type = "dml2",
treatment = a ~ v,
response_model = ML(y~ a*(x + v + I(v^2))),
importance_model = ML(D_ ~ v + I(v^2)),
propensity_model = ML(a ~ x + v + I(v^2), family=binomial),
nfolds = 2)
summary(e) # the true parameters are c(1,1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.