| naivebayes | R Documentation |
Naive Bayes Classifier
naivebayes(
formula,
data,
weights = NULL,
kernel = FALSE,
laplace.smooth = 0,
prior = NULL,
...
)
formula |
Formula with syntax: response ~ predictors | weights |
data |
data.frame |
weights |
optional frequency weights |
kernel |
If TRUE a kernel estimator is used for numeric predictors (otherwise a gaussian model is used) |
laplace.smooth |
Laplace smoothing |
prior |
optional prior probabilities (default estimated from data) |
... |
additional arguments to lower level functions |
An object of class 'naivebayes' is returned. See
naivebayes-class for more details about this class and
its generic functions.
Klaus K. Holst
library(data.table)
data(iris)
m <- naivebayes(Species ~ Sepal.Width + Petal.Length, data = iris)
pr <- predict(m, newdata = iris)
# using weights to reduce the size of the dataset
n <- 5e2
x <- rnorm(n, sd = 2) > 0
y <- rbinom(n, 1, lava::expit(x))
# full data set
d1 <- data.frame(y, x = as.factor(x > 0))
m1 <- naivebayes(y ~ x, data = d1)
# reduced data set
d2 <- data.table(d1)[, .(.N), by = .(y, x)]
m2 <- naivebayes(y ~ x, data = d2, weights = d2$N)
all(predict(m1, d1) == predict(m2, d1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.