Nothing
#' Summarize the Inference Result of Tau Process at Last Specified Time
#'
#' @description This function summarizes the inference results obtained from `tau.fit`.
#' The results under random grouping design (complete randomization design) and fixed grouping design (random allocation rule / urn model) would be almost the same with large sample size.
#' @param object an object of class "tauFit"
#' @param conf.int the significance level of the confidence interval
#' @param ... additional arguments passed to underlying summary method
#'
#' @return an object of class "summaryTauFit"
#' @export
#'
#' @examples fit <- tau.fit(data = pbc)
#' summary(fit)
summary.tauFit <- function(object, conf.int = 0.95, ...) {
tau.fit <- object
tau <- tau.fit$tau[[length(tau.fit$t)]]
se.r <- sqrt(tau.fit$var.r)
se.f <- sqrt(tau.fit$var.f)
rval <- list(N0 = tau.fit$N0, N1 = tau.fit$N1, t = tau.fit$t[length(tau.fit$t)])
tmp <- matrix(c(tau, se.r, tau / se.r,
stats::pchisq((tau / se.r) ^ 2, 1, lower.tail = FALSE)),
nrow = 1)
colnames(tmp) <- c("tau", "se(R)", "z(R)", "Pr(>|z|) (R)")
row.names(tmp) <- ""
rval$tau.fit.r <- tmp
tmp <- matrix(c(tau, se.f, tau / se.f,
stats::pchisq((tau / se.f) ^ 2, 1, lower.tail = FALSE)),
nrow = 1)
colnames(tmp) <- c("tau", "se(F)", "z(F)", "Pr(>|z|) (F)")
row.names(tmp) <- ""
rval$tau.fit.f <- tmp
if(conf.int) {
z <- stats::qnorm((1 + conf.int) / 2)
tmp <- matrix(c(tau, tau - z * se.r, tau + z * se.r, tau - z * se.f, tau + z * se.r),
nrow = 1)
colnames(tmp) <- c("tau",
paste("lower .", round(100 * conf.int, 2), "(R)", sep = ""),
paste("upper .", round(100 * conf.int, 2), "(R)", sep = ""),
paste("lower .", round(100 * conf.int, 2), "(F)", sep = ""),
paste("upper .", round(100 * conf.int, 2), "(F)", sep = ""))
row.names(tmp) <- " "
rval$conf.int <- tmp
}
class(rval) <- "summaryTauFit"
return(rval)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.