inst/examples/zzz-ex-step-vpd-complex-polynomial.R

library(recipes)

# inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>% 
  step_pd_raster(image, method = "link_join") %>% 
  step_vpd_complex_polynomial(image_pd, hom_degree = 1) %>% 
  print() -> volc_rec
print(volc_rec)
volc_rec %>% 
  prep(training = volc_dat) %>% 
  bake(new_data = volc_dat)

# dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>% 
  transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>% 
  subset(select = -permeability) %>% 
  tidyr::nest(chem_fp = -perm_cut) %>% 
  print() -> perm_dat
recipe(perm_cut ~ chem_fp, data = perm_dat) %>% 
  step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>% 
  step_vpd_complex_polynomial(chem_fp_pd, hom_degree = 1) %>% 
  step_pca(starts_with("chem_fp_pd_"), num_comp = 2) %>%
  print() -> perm_rec
perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
# inspect results
tidy(perm_rec)
tidy(perm_rec, number = 2)
tidy(perm_est, number = 2)
# visualize results
with(perm_res, {
  plot(PC1, PC2, type = "n", asp = 1)
  text(PC1, PC2, labels = perm_cut)
})

Try the tdarec package in your browser

Any scripts or data that you put into this service are public.

tdarec documentation built on June 8, 2025, 10:41 a.m.