R/gomes.R

Defines functions gomes

Documented in gomes

#' A Double Bootstrap Procedure for Choosing the Optimal Sample Fraction
#'
#' An Implementation of the procedure proposed in Gomes et al. (2012) and Caeiro et al. (2016) for selecting the optimal sample fraction in tail index estimation.
#' @param data vector of sample data
#' @param B number of Bootstrap replications
#' @param epsilon gives the amount of the first resampling size \code{n1} by choosing \code{n1 = n^epsilon}. Default is set to \code{epsilon=0.995}
#' @details The Double Bootstrap procedure simulates the AMSE criterion of the Hill estimator using an auxiliary statistic. Minimizing this statistic gives a consistent estimator of the sample fraction \code{k/n} with \code{k} the optimal number of upper order statistics. This number, denoted \code{k0} here, is equivalent to the number of extreme values or, if you wish, the number of exceedances in the context of a POT-model like the generalized Pareto distribution. \code{k0} can then be associated with the unknown threshold \code{u} of the GPD by choosing \code{u} as the \code{n-k0}th upper order statistic. For more information see references.
#' @return
#' \item{second.order.par }{gives an estimation of the second order parameter \code{rho}.}
#' \item{k0}{optimal number of upper order statistics, i.e. number of exceedances or data in the tail}
#' \item{threshold}{the corresponding threshold}
#' \item{tail.index}{the corresponding tail}
#' @references Gomes, M.I. and Figueiredo, F. and Neves, M.M. (2012). Adaptive estimation of heavy right tails: resampling-based methods in action. \emph{Extremes}, \bold{15}, 463--489.
#' @references Caeiro, F. and Gomes, I. (2016). Threshold selection in extreme value analysis. \emph{Extreme Value Modeling and Risk Analysis: Methods and Applications}, 69--86.
#' @examples
#' data(danish)
#' gomes(danish)
#' @export
gomes <-
function(data,B=1000,epsilon=0.995){
n=length(data)
n1=floor(n^epsilon)

helphill=function (k,j) {
  xstat = sort(data, decreasing = TRUE)
  xihat = mean((log(xstat[1:k]) - log(xstat[k + 1]))^j)
  xihat
}

DAMSE=function(data){
  n=length(data)
  k=c(floor(n^0.995),floor(n^0.999))
  
  M11=helphill(k[1],1)
  M12=helphill(k[1],2)
  M13=helphill(k[1],3)
  
  M21=helphill(k[2],1)
  M22=helphill(k[2],2)
  M23=helphill(k[2],3) 
  
  #tau=1
  W.k1.t1=(M11-sqrt(M12/2))/(sqrt(M12/2)-(M13/6)^(1/3))
  W.k2.t1=(M21-sqrt(M22/2))/(sqrt(M22/2)-(M23/6)^(1/3))
  rho.k1.t1=-abs(3*(W.k1.t1-1)/(W.k1.t1-3))
  rho.k2.t1=-abs(3*(W.k2.t1-1)/(W.k2.t1-3))
  
  #tau=0
  W.k1.t0=(log(M11)-0.5*log(M12/2))/(0.5*log(M12/2)-log(M13/6)/3)
  W.k2.t0=(log(M21)-0.5*log(M22/2))/(0.5*log(M22/2)-log(M23/6)/3)
  rho.k1.t0=-abs(3*(W.k1.t0-1)/(W.k1.t0-3))
  rho.k2.t0=-abs(3*(W.k2.t0-1)/(W.k2.t0-3))
  
  chi.t1=median(c(rho.k1.t1,rho.k2.t1))
  chi.t0=median(c(rho.k1.t0,rho.k2.t0))
  I.t1=c((rho.k1.t1-chi.t1)^2,(rho.k2.t1-chi.t1)^2)
  I.t0=c((rho.k1.t0-chi.t0)^2,(rho.k2.t0-chi.t0)^2)
  
  if (sum(I.t0)<=sum(I.t1)) { 
    tau=0; rho=rho.k2.t0
  } else {
    tau=1; rho=rho.k2.t1
  }
  
  U=c();
  xstat = sort(data, decreasing = TRUE)
  for (i in 1:k[2]) {
    U[i]=i*(log(xstat[i]) - log(xstat[i + 1]))
  }
  
  i=1:k[2]
  dk=mean((i/k[2])^(-rho))
  
  Dk=function(a){
    D=mean((i/k[2])^(-a)*U[i])
  }
  
  beta=(k[2]/n)^rho*(dk*Dk(0)-Dk(rho))/(dk*Dk(rho)-Dk(2*rho)) 
  erg=c(beta,rho)
  erg
}
secorder=DAMSE(data)

n2=floor((n1^2/n))+1
khelp1=2:(n1-1)
khelp2=2:(n2-1)
tn1=matrix(nrow=B,ncol=n1-2)
tn2=matrix(nrow=B,ncol=n2-2)
for (l in 1:B){
  x2=sample(data,n2,replace=TRUE)
  x1=c(x2,sample(data,(n1-n2),replace=TRUE))
  x2=sort(x2,decreasing=TRUE)
  x1=sort(x1,decreasing=TRUE)
  i1=2:(n1-1)
  i2=2:(n2-1)
  m1=floor(i1/2)
  m2=floor(i2/2)
  Tkn1.1=(cumsum(log(x1[i1]))/i1)-log(x1[i1+1]) 
  Tkn1.2=(cumsum(log(x1[m1]))/i1)-log(x1[m1+1])
  Tkn2.1=(cumsum(log(x2[i2]))/i2)-log(x2[i2+1])
  Tkn2.2=(cumsum(log(x2[m2]))/i2)-log(x2[m2+1])
  tn1[l,]=Tkn1.2-Tkn1.1
  tn2[l,]=Tkn2.2-Tkn2.1
}
tn1=tn1^2
tn2=tn2^2
tn1star=colMeans(tn1)
tn2star=colMeans(tn2)
k1star=which.min(tn1star)
k2star=which.min(tn2star)

rho=secorder[2]
Exp=2/(1-2*rho)
k0star=floor((1-2^rho)^(Exp)*((k1star^2)/k2star))+1
u=sort(data,decreasing=TRUE)[k0star]
ti=1/helphill(k0star,1)
list=list(sec.order.par=secorder,k0=k0star,threshold=u,tail.index=ti)
list
}

Try the tea package in your browser

Any scripts or data that you put into this service are public.

tea documentation built on April 19, 2020, 3:57 p.m.