Nothing
#' Template: Adverse Events Table by Standardized MedDRA Query
#'
#' Creates a valid expression to generate an adverse events table by Standardized MedDRA Query.
#'
#' @inheritParams template_arguments
#' @param smq_varlabel (`character`)\cr label to use for new column `SMQ` created by [tern::h_stack_by_baskets()].
#' @param baskets (`character`)\cr names of the selected standardized/customized queries variables.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_smq()]
#'
#' @keywords internal
template_smq <- function(dataname,
parentname,
arm_var,
llt = "AEDECOD",
add_total = TRUE,
total_label = default_total_label(),
sort_criteria = c("freq_desc", "alpha"),
drop_arm_levels = TRUE,
na_level = default_na_str(),
smq_varlabel = "Standardized MedDRA Query",
baskets = c("SMQ01NAM", "SMQ02NAM", "CQ01NAM"),
id_var = "USUBJID",
basic_table_args = teal.widgets::basic_table_args()) {
checkmate::assert_string(parentname)
checkmate::assert_string(dataname)
checkmate::assert_character(arm_var, min.len = 1, max.len = 2)
checkmate::assert_string(id_var)
checkmate::assert_string(llt)
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_flag(drop_arm_levels)
checkmate::assert_string(na_level)
checkmate::assert_string(smq_varlabel)
checkmate::assert_character(baskets)
sort_criteria <- match.arg(sort_criteria)
y <- list()
data_list <- list()
data_list <- add_expr(
data_list,
substitute(
anl <- dataname,
env = list(
dataname = as.name(dataname)
)
)
)
data_list <- add_expr(
data_list,
prepare_arm_levels(
dataname = "anl",
parentname = parentname,
arm_var = arm_var[[1]],
drop_arm_levels = drop_arm_levels
)
)
if (length(arm_var) == 2) {
data_list <- add_expr(
data_list,
prepare_arm_levels(
dataname = "anl",
parentname = parentname,
arm_var = arm_var[[2]],
drop_arm_levels = drop_arm_levels
)
)
}
data_list <- add_expr(
data_list,
substitute(
anl <- h_stack_by_baskets(
df = dataname,
baskets = baskets,
smq_varlabel = smq_varlabel,
keys = unique(c("STUDYID", id_var, arm_var, llt))
),
env = list(
dataname = as.name("anl"),
baskets = baskets,
smq_varlabel = smq_varlabel,
id_var = id_var,
arm_var = arm_var,
llt = llt
)
)
)
data_list <- add_expr(
data_list,
quote(
if (nrow(anl) == 0) {
stop("Analysis dataset contains only missing values")
}
)
)
data_list <- add_expr(
data_list,
substitute(
anl <- df_explicit_na(
dataname,
na_level = na_str
),
env = list(
dataname = as.name("anl"),
na_str = na_level
)
)
)
data_list <- add_expr(
data_list,
substitute(
parentname <- df_explicit_na(
parentname,
na_level = na_str
),
env = list(
parentname = as.name(parentname),
na_str = na_level
)
)
)
y$data <- bracket_expr(data_list)
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args,
module_table = teal.widgets::basic_table_args(show_colcounts = TRUE)
)
)
# Start layout steps.
layout_list <- list()
layout_list <- add_expr(
layout_list,
substitute(
expr = expr_basic_table_args %>%
rtables::split_cols_by(var = arm_var),
env = list(arm_var = arm_var[[1]], expr_basic_table_args = parsed_basic_table_args)
)
)
if (length(arm_var) == 2) {
layout_list <- add_expr(
layout_list,
if (drop_arm_levels) {
substitute(
expr = rtables::split_cols_by(var = nested_col, split_fun = drop_split_levels),
env = list(nested_col = arm_var[[2]])
)
} else {
substitute(
expr = rtables::split_cols_by(var = nested_col),
env = list(nested_col = arm_var[[2]])
)
}
)
}
if (add_total) {
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::add_overall_col(total_label),
env = list(total_label = total_label)
)
)
}
layout_list <- add_expr(
layout_list,
substitute(
expr = summarize_num_patients(
var = id_var,
.stats = c("unique"),
.labels = c(
unique = "Total number of patients with at least one adverse event"
)
),
env = list(
id_var = id_var
)
)
)
split_label <- substitute(
expr = teal.data::col_labels(dataname, fill = FALSE)[["SMQ"]],
env = list(
dataname = as.name("anl")
)
)
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::split_rows_by(
"SMQ",
child_labels = "visible",
nested = FALSE,
split_fun = trim_levels_in_group(llt, drop_outlevs = FALSE),
indent_mod = -1L,
label_pos = "topleft",
split_label = split_label
),
env = list(
llt = llt,
split_label = split_label
)
)
)
layout_list <- add_expr(
layout_list,
substitute(
expr = summarize_num_patients(
var = id_var,
.stats = c("unique", "nonunique"),
.labels = c(
unique = "Total number of patients with at least one adverse event",
nonunique = "Total number of events"
)
),
env = list(
id_var = id_var
)
)
)
layout_list <- add_expr(
layout_list,
substitute(
expr = count_occurrences(vars = llt, drop = FALSE),
env = list(
llt = llt
)
)
)
layout_list <- add_expr(
layout_list,
substitute(
expr = append_varlabels(dataname, llt, indent = 1L),
env = list(
dataname = as.name("anl"),
llt = llt
)
)
)
y$layout <- substitute(
expr = lyt <- layout_pipe,
env = list(layout_pipe = pipe_expr(layout_list))
)
y$table <- substitute(
expr = {
result <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = parent)
},
env = list(parent = as.name(parentname))
)
if (sort_criteria == "freq_desc") {
y$sort <- substitute(
expr = {
sorted_result <- result %>%
sort_at_path(path = c("SMQ"), scorefun = cont_n_allcols) %>%
sort_at_path(path = c("SMQ", "*", llt), scorefun = score_occurrences, na.pos = "last")
},
env = list(llt = llt)
)
} else {
y$sort <- quote(
sorted_result <- result
)
}
y$sort_and_prune <- quote(
expr = {
all_zero <- function(tr) {
!inherits(tr, "ContentRow") && rtables::all_zero_or_na(tr)
}
table <- sorted_result %>% rtables::trim_rows(criteria = all_zero)
}
)
y
}
#' teal Module: Adverse Events Table by Standardized MedDRA Query
#'
#' This module produces an adverse events table by Standardized MedDRA Query.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_smq
#' @param arm_var ([teal.transform::choices_selected()])\cr object with all
#' available choices and preselected option for variable names that can be used as `arm_var`.
#' It defines the grouping variable(s) in the results table.
#' If there are two elements selected for `arm_var`,
#' second variable will be nested under the first variable.
#' @param baskets ([teal.transform::choices_selected()])\cr object with all
#' available choices and preselected options for standardized/customized queries.
#' @param scopes ([teal.transform::choices_selected()])\cr object with all
#' available choices for the scopes of standardized queries.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` - output of `rtables::build_table()`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_smq(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADAE <- tmc_ex_adae
#'
#' .names_baskets <- grep("^(SMQ|CQ).*NAM$", names(ADAE), value = TRUE)
#' .names_scopes <- grep("^SMQ.*SC$", names(ADAE), value = TRUE)
#'
#' .cs_baskets <- choices_selected(
#' choices = variable_choices(ADAE, subset = .names_baskets),
#' selected = .names_baskets
#' )
#'
#' .cs_scopes <- choices_selected(
#' choices = variable_choices(ADAE, subset = .names_scopes),
#' selected = .names_scopes,
#' fixed = TRUE
#' )
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_smq(
#' label = "Adverse Events by SMQ Table",
#' dataname = "ADAE",
#' arm_var = choices_selected(
#' choices = variable_choices(data[["ADSL"]], subset = c("ARM", "SEX")),
#' selected = "ARM"
#' ),
#' add_total = FALSE,
#' baskets = data[[".cs_baskets"]],
#' scopes = data[[".cs_scopes"]],
#' llt = choices_selected(
#' choices = variable_choices(data[["ADAE"]], subset = c("AEDECOD")),
#' selected = "AEDECOD"
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_t_smq <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
id_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, subset = "USUBJID"),
selected = "USUBJID", fixed = TRUE
),
llt,
add_total = TRUE,
total_label = default_total_label(),
sort_criteria = c("freq_desc", "alpha"),
drop_arm_levels = TRUE,
na_level = default_na_str(),
smq_varlabel = "Standardized MedDRA Query",
baskets,
scopes,
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_smq")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(id_var, "choices_selected")
checkmate::assert_class(llt, "choices_selected")
checkmate::assert_class(baskets, "choices_selected")
checkmate::assert_class(scopes, "choices_selected")
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_flag(drop_arm_levels)
sort_criteria <- match.arg(sort_criteria)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname, multiple = TRUE, ordered = TRUE),
id_var = cs_to_des_select(id_var, dataname = dataname),
baskets = cs_to_des_select(baskets, dataname = dataname, multiple = TRUE),
scopes = cs_to_des_select(scopes, dataname = dataname, multiple = TRUE),
llt = cs_to_des_select(llt, dataname = dataname)
)
module(
label = label,
ui = ui_t_smq,
server = srv_t_smq,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
na_level = na_level,
label = label,
total_label = total_label,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_t_smq <- function(id, ...) {
ns <- NS(id)
a <- list(...) # module args
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var,
a$id_var,
a$baskets,
a$scopes,
a$llt
)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(teal.widgets::table_with_settings_ui(ns("table"))),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c(
"arm_var", "baskets", "llt", "id_var", "scopes"
)]),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("llt"),
label = "Select the low level term",
data_extract_spec = a$llt,
is_single_dataset = is_single_dataset_value
),
checkboxInput(ns("add_total"), "Add All Patients column", value = a$add_total),
teal.transform::data_extract_ui(
id = ns("baskets"),
label = "Select the SMQXXNAM/CQXXNAM baskets",
data_extract_spec = a$baskets,
is_single_dataset = is_single_dataset_value
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table")),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional Variables Info",
checkboxInput(
ns(
"drop_arm_levels"
),
"Drop arm levels not in filtered analysis dataset",
value = a$drop_arm_levels
),
teal.transform::data_extract_ui(
id = ns("id_var"),
label = "Subject Identifier",
data_extract_spec = a$id_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("scopes"),
label = "Scope variables available",
data_extract_spec = a$scopes,
is_single_dataset = is_single_dataset_value
),
selectInput(
inputId = ns("sort_criteria"),
label = "Sort Criteria",
choices = c(
"Decreasing frequency" = "freq_desc",
"Alphabetically" = "alpha"
),
selected = a$sort_criteria,
multiple = FALSE
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_t_smq <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
arm_var,
llt,
id_var,
baskets,
scopes,
na_level,
label,
total_label,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(shiny::isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(
scopes = scopes,
llt = llt,
arm_var = arm_var,
id_var = id_var,
baskets = baskets
),
datasets = data,
select_validation_rule = list(
scopes = shinyvalidate::sv_required("A scope variable is required"),
llt = shinyvalidate::sv_required("A low level term variable is required"),
arm_var = shinyvalidate::compose_rules(
shinyvalidate::sv_required("At least one treatment variable is required"),
~ if (length(.) > 2) "Please select no more than two treatment variables"
),
id_var = shinyvalidate::sv_required("An id variable is required"),
baskets = shinyvalidate::sv_required("At least one basket is required")
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list(arm_var = arm_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
merged <- list(
anl_input_r = anl_inputs,
adsl_input_r = adsl_inputs,
anl_q = anl_q
)
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- merged$anl_q()[[parentname]]
anl_filtered <- merged$anl_q()[[dataname]]
input_arm_var <- names(merged$anl_input_r()$columns_source$arm_var)
input_id_var <- names(merged$anl_input_r()$columns_source$id_var)
input_baskets <- names(merged$anl_input_r()$columns_source$baskets)
input_scopes <- names(merged$anl_input_r()$columns_source$scopes)
input_llt <- names(merged$anl_input_r()$columns_source$llt)
# validate inputs
validate_standard_inputs(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var),
anl = anl_filtered,
anlvars = c(
"USUBJID", "STUDYID", input_id_var, input_baskets,
input_scopes, input_llt
),
arm_var = input_arm_var[[1]]
)
})
# Generate r code for the analysis.
all_q <- reactive({
validate_checks()
my_calls <- template_smq(
parentname = "ANL_ADSL",
dataname = "ANL",
arm_var = names(merged$anl_input_r()$columns_source$arm_var),
llt = names(merged$anl_input_r()$columns_source$llt),
add_total = input$add_total,
total_label = total_label,
sort_criteria = input$sort_criteria,
drop_arm_levels = input$drop_arm_levels,
baskets = names(merged$anl_input_r()$columns_source$baskets),
na_level = na_level,
id_var = names(merged$anl_input_r()$columns_source$id_var),
basic_table_args = basic_table_args
)
teal.code::eval_code(merged$anl_q(), as.expression(unlist(my_calls)))
})
# Decoration of table output.
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
# Outputs to render.
table_r <- reactive(decorated_table_q()[["table"]])
teal.widgets::table_with_settings_srv(
id = "table",
table_r = table_r
)
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Adverse Events Table by Standardized `MedDRA` Query (SMQ)",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.