Nothing
#' ellipsoid_projection: function to project an ellipsoid model
#' @description Function to project an ellipsoid model using the shape matrix
#' (covariance matrix) of the niche variables.
#' @param envlayers A SpatRaster object of the niche variables.
#' @param centroid A vector with the values of the centers of the ellipsoid
#' (see \code{\link[tenm]{cov_center}}).
#' @param covar The shape matrix (covariance) of the ellipsoid
#' (see \code{\link[tenm]{cov_center}}).
#' @param level The proportion of points to be included inside the ellipsoid
#' @param output The output distance: two possible values "suitability" or
#' "mahalanobis". By default the function uses "suitability".
#' @param plot Logical If \code{TRUE} a plot of the niche will be shown.
#' @param size The size of the points of the niche plot.
#' @param xlab1 For x label for 2-dimensional histogram
#' @param ylab1 For y label for 2-dimensional histogram
#' @param zlab1 For z label for 2-dimensional histogram
#' @param alpha Control the transparency of the 3-dimensional ellipsoid
#' @param ... Arguments passed to \code{\link[rgl]{plot3d}} function from rgl
#' @return Returns a SpatRaster of suitability values.
#' @export
#'
#' @examples
#' \donttest{
#' library(tenm)
#' data("abronia")
#' tempora_layers_dir <- system.file("extdata/bio",package = "tenm")
#' abt <- tenm::sp_temporal_data(occs = abronia,
#' longitude = "decimalLongitude",
#' latitude = "decimalLatitude",
#' sp_date_var = "year",
#' occ_date_format="y",
#' layers_date_format= "y",
#' layers_by_date_dir = tempora_layers_dir,
#' layers_ext="*.tif$")
#' abtc <- tenm::clean_dup_by_date(abt,threshold = 10/60)
#' future::plan("multisession",workers=2)
#' abex <- tenm::ex_by_date(this_species = abtc,train_prop=0.7)
#' abbg <- tenm::bg_by_date(this_species = abex,
#' buffer_ngbs=10,n_bg=50000)
#' future::plan("sequential")
#' mod <- tenm::cov_center(data = abex$env_data,
#' mve = TRUE,
#' level = 0.975,
#' vars = c("bio_05","bio_06","bio_12"))
#' layers_path <- list.files(file.path(tempora_layers_dir,
#' "2016"),
#' pattern = ".tif$",full.names = TRUE)
#' elayers <- terra::rast(layers_path)
#' nmod <- ellipsoid_projection(envlayers = elayers[[names(mod$centroid)]],
#' centroid = mod$centroid,
#' covar = mod$covariance,
#' level = 0.99999,
#' output = "suitability",
#' size = 3,
#' plot = TRUE)
#' }
#'
ellipsoid_projection <- function(envlayers,centroid,covar,level=0.95,
output="suitability",plot=TRUE,size,
xlab1="niche var 1",ylab1= "niche var 2",
zlab1="S", alpha=0.1,...){
if(methods::is(envlayers, "SpatRaster")){
suitRaster <- envlayers[[1]]
names(suitRaster) <- output
nonaids <- which(!is.na(suitRaster[]))
env_vars <- 1:terra::nlyr(envlayers) |> purrr::map_dfc(function(x){
val <- envlayers[[x]][]
dfv <- data.frame(val[nonaids])
names(dfv) <- names(envlayers[[x]])
return(dfv)
})
}
else{
stop("envlayers should be of class 'SpatRaster'")
}
# Calculating distance to the centroid
mahalanobisD <- stats::mahalanobis(env_vars,
center = centroid,
cov = covar)
suit <- function( mahalanobisD){
expo <- exp(-0.5* mahalanobisD)
return(expo)
}
# Computing the suitabilities
if(output =="suitability"){
suits <- suit( mahalanobisD)
} else if(output == "mahalanobis"){
suits <- mahalanobisD
}
rm(list = c("mahalanobisD"))
suitVals <- rep(NA,terra::ncell(envlayers[[1]]))
suitVals[nonaids] <- suits
suitRaster[] <- suitVals
rm(list=c("suitVals"))
if(dim(env_vars)[2]==2 && plot==TRUE){
x <- seq(from = centroid[1]/2,to =centroid[1]*2 ,length=100)
x <- sort(x)
y <- seq(from = centroid[2]/2,to =centroid[2]*2 ,length=100)
y <- sort(y)
suit1 <- function(x,y) {
maha1 <- stats::mahalanobis(cbind(x,y),
center = centroid,
cov = covar)
expo <- exp(-0.5* maha1)
return(expo)
}
#z <- x %o% y
z <- outer(x,y,FUN = suit1)
oldpar <- graphics::par(no.readonly = TRUE)
on.exit(graphics::par(oldpar))
p1 <- graphics::persp(x,y,z, box=T,xlab=xlab1,
ylab=ylab1,zlab=zlab1, col="blue",
theta = 55, phi = 30,r = 40,
d = 0.1, expand = 0.5,
ticktype = "detailed", nticks=5,
cex.lab=1.5, cex.axis=1.3,
cex.main=1.5, cex.sub=1.5)
ranges <- t(sapply(list(x,y,z),range))
means <- rowMeans(ranges)
## label offset distance, as a fraction of the plot width
labelspace <- 0.12 ## tweak this until you like the result
xpos <- min(x)-(diff(range(x)))*labelspace
ypos <- min(y)-(diff(range(y)))*labelspace
labelbot3d <- c(xpos,ypos,min(z))
labeltop3d <- c(xpos,ypos,max(z))
labelmid3d <- c(xpos,ypos,mean(range(z)))
trans3dfun <- function(v) { grDevices::trans3d(v[1],v[2],v[3],p1) }
labelbot2d <- trans3dfun(labelbot3d)
labelmid2d <- trans3dfun(labelmid3d)
labeltop2d <- trans3dfun(labeltop3d)
labelang <- 180/pi*atan2(labeltop2d$y-labelbot2d$y,labeltop2d$x-labelbot2d$x)
graphics::par(xpd=NA,srt=labelang) ## disable clipping and set string rotation
graphics::text(labelmid2d[1]$x,labelmid2d$y,zlab1,cex=1.5)
}
if(dim(env_vars)[2]==3 && plot==TRUE){
data1 <- env_vars
dfd <- dim(data1)[1] - 1
dfn <- dim(data1)[2] - 1
# Ellipsoid radius
#ell.radius_E <- sqrt(dfn * qf(level, dfn, dfd))
ellips_E <- rgl::ellipse3d(covar,centre = centroid,level = 0.99)
if(dfd > 50000)
np <- 50000
else
np <- dim(data1)[1]
toSam <- sample(1:length(data1[,1]),np)
data1 <- data1[toSam,]
if(output == "suitability"){
suits2 <- suits[toSam]
} else if(output == "mahalanobis"){
suits2 <- suit(suits[toSam])
}
rgl::plot3d(data1,size = size,col=grDevices::hsv(suits2*.71,.95,.9),
xlab = xlab1, ylab = ylab1, zlab = zlab1,...)
rgl::wire3d(ellips_E, col=4, lit=FALSE,alpha=alpha,...)
}
rm(list=c("env_vars","suits"))
return(suitRaster)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.