Description Usage Arguments Details Value Raises See Also
View source: R/feature_columns.R
Use this when your inputs are in string or integer format, and you have an
in-memory vocabulary mapping each value to an integer ID. By default,
out-of-vocabulary values are ignored. Use default_value
to specify how to
include out-of-vocabulary values. For the input dictionary features
,
features$key
is either tensor or sparse tensor object. If it's tensor object,
missing values can be represented by -1
for int and ''
for string.
1 2 3 4 5 6 7 | column_categorical_with_vocabulary_list(
...,
vocabulary_list,
dtype = NULL,
default_value = -1L,
num_oov_buckets = 0L
)
|
... |
Expression(s) identifying input feature(s). Used as the column name and the dictionary key for feature parsing configs, feature tensors, and feature columns. |
vocabulary_list |
An ordered iterable defining the vocabulary. Each
feature is mapped to the index of its value (if present) in
|
dtype |
The type of features. Only string and integer types are
supported. If |
default_value |
The value to use for values not in |
num_oov_buckets |
Non-negative integer, the number of out-of-vocabulary
buckets. All out-of-vocabulary inputs will be assigned IDs in the range
|
Note that these values are independent of the default_value
argument.
A categorical column with in-memory vocabulary.
ValueError: if vocabulary_list
is empty, or contains
duplicate keys.
ValueError: if dtype
is not integer or string.
Other feature column constructors:
column_bucketized()
,
column_categorical_weighted()
,
column_categorical_with_hash_bucket()
,
column_categorical_with_identity()
,
column_categorical_with_vocabulary_file()
,
column_crossed()
,
column_embedding()
,
column_numeric()
,
input_layer()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.