default.itemps | R Documentation |
Parameterized by the minimum desired inverse temperature, this
function generates a ladder of inverse temperatures k[1:m]
starting at k[1] = 1
, with m
steps down to the final
temperature k[m] = k.min
progressing sigmoidally,
harmonically or geometrically.
The output is in a format convenient for the b*
functions
in the tgp package (e.g. btgp
), including
stochastic approximation parameters c_0
and n_0
for tuning the uniform pseudo-prior output by this function
default.itemps(m = 40, type = c("geometric", "harmonic","sigmoidal"),
k.min = 0.1, c0n0 = c(100, 1000), lambda = c("opt",
"naive", "st"))
m |
Number of temperatures in the ladder; |
type |
Choose from amongst two common defaults for simulated tempering and Metropolis-coupled MCMC, i.e., geometric (default) or harmonic, or a sigmoidal ladder (default) that concentrates more inverse temperatures near 1 |
k.min |
Minimum inverse temperature desired |
c0n0 |
Stochastic approximation parameters used to tune
the simulated tempering pseudo-prior ( |
lambda |
Method for combining the importance samplers at each
temperature. Optimal combination (
Setting |
The geometric and harmonic inverse temperature ladders are usually defined
by an index i=1,\dots,m
and a parameter
\Delta_k > 0
. The geometric ladder is defined by
k_i = (1+\Delta_k)^{1-i},
and the harmonic ladder by
k_i = (1+\Delta_k(i-1))^{-1}.
Alternatively, specifying the minimum temperature
k_{\mbox{\tiny min}}
in the ladder can be used to
uniquely determine \Delta_k
. E.g., for the geometric
ladder
\Delta_k = k_{\mbox{\tiny min}}^{1/(1-m)}-1,
and for the harmonic
\Delta_k = \frac{k_{\mbox{\tiny min}}^{-1}-1}{m-1}.
In a similar spirit, the sigmoidal ladder is specified by first
situating m
indices j_i\in \Re
so that
k_1 = k(j_1) = 1
and
k_m = k(j_m) = k_{\mbox{\tiny min}}
under
k(j_i) = 1.01 - \frac{1}{1+e^{j_i}}.
The remaining j_i, i=2,\dots,(m-1)
are spaced evenly
between j_1
and j_m
to fill out the ladder
k_i = k(j_i), i=1,\dots,(m-1)
.
For more details, see the Importance tempering paper cited
below and a full demonstration in vignette("tgp2")
The return value is a list
which is compatible with the input argument
itemps
to the b*
functions (e.g. btgp
),
containing the following entries:
c0n0 |
A copy of the |
k |
The generated inverse temperature ladder; a vector
with |
pk |
A vector with |
lambda |
IT method, as specified by the input argument |
Robert B. Gramacy, rbg@vt.edu, and Matt Taddy, mataddy@amazon.com
Gramacy, R.B., Samworth, R.J., and King, R. (2010) Importance Tempering. ArXiV article 0707.4242 Statistics and Computing, 20(1), pp. 1-7; https://arxiv.org/abs/0707.4242.
For stochastic approximation and simulated tempering (ST):
Geyer, C.~and Thompson, E.~(1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. Journal of the American Statistical Association, 90, 909–920.
For the geometric temperature ladder:
Neal, R.M.~(2001) Annealed importance sampling. Statistics and Computing, 11, 125–129
Justifying geometric and harmonic defaults:
Liu, J.S.~(1002) Monte Carlo Strategies in Scientific Computing. New York: Springer. Chapter 10 (pages 213 & 233)
https://bobby.gramacy.com/r_packages/tgp/
btgp
## comparing the different ladders
geo <- default.itemps(type="geometric")
har <- default.itemps(type="harmonic")
sig <- default.itemps(type="sigmoidal")
par(mfrow=c(2,1))
matplot(cbind(geo$k, har$k, sig$k), pch=21:23,
main="inv-temp ladders", xlab="indx",
ylab="itemp")
legend("topright", pch=21:23,
c("geometric","harmonic","sigmoidal"), col=1:3)
matplot(log(cbind(sig$k, geo$k, har$k)), pch=21:23,
main="log(inv-temp) ladders", xlab="indx",
ylab="itemp")
## Not run:
## using Importance Tempering (IT) to improve mixing
## on the motorcycle accident dataset
library(MASS)
out.it <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,22000,2),
R=3, itemps=default.itemps(), bprior="b0", trace=TRUE,
pred.n=FALSE)
## compare to regular tgp w/o IT
out.reg <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,22000,2),
R=3, bprior="b0", trace=TRUE, pred.n=FALSE)
## compare the heights explored by the three chains:
## REG, combining all temperatures, and IT
p <- out.it$trace$post
L <- length(p$height)
hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE))
b <- hist2bar(cbind(out.reg$trace$post$height, p$height, hw))
par(mfrow=c(1,1))
barplot(b, beside=TRUE, xlab="tree height", ylab="counts", col=1:3,
main="tree heights encountered")
legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.