exp2d | R Documentation |
A 2-dimensional data set that can be used to validate non-stationary models.
data(exp2d)
A data frame
with 441 observations on the following 4 variables.
X1
Numeric vector describing the first dimension of X
inputs
X2
Numeric vector describing the second dimension of X
inputs
Z
Numeric vector describing the response Z(X)+N(0,sd=0.001)
Ztrue
Numeric vector describing the true response Z(X)
,
without noise
The true response is evaluated as
Z(X)=x_1 * \exp(x_1^2-x_2^2).
Zero-mean normal noise
with sd=0.001
has been added to the true response
This data is used in the examples of the functions listed below in
the “See Also” section via the exp2d.rand
function
Robert B. Gramacy, rbg@vt.edu, and Matt Taddy, mataddy@amazon.com
Gramacy, R. B. (2020) Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC. https://bobby.gramacy.com/surrogates/
Gramacy, R. B. (2007). tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models. Journal of Statistical Software, 19(9). https://www.jstatsoft.org/v19/i09 \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v019.i09")}
Robert B. Gramacy, Matthew Taddy (2010). Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models. Journal of Statistical Software, 33(6), 1–48. https://www.jstatsoft.org/v33/i06/. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v033.i06")}
Gramacy, R. B., Lee, H. K. H. (2008). Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association, 103(483), pp. 1119-1130. Also available as ArXiv article 0710.4536 https://arxiv.org/abs/0710.4536
https://bobby.gramacy.com/r_packages/tgp/
exp2d.rand
, exp2d.Z
,
btgp
, and other b*
functions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.