R/ithresh.R

Defines functions bloocv cv_fn ithresh

Documented in ithresh

# =========================== ithresh ===========================
#
#' Threshold selection in the i.i.d. case (peaks over threshold)
#'
#' Produces a diagnostic plot to assist in the selection of an extreme value
#' threshold in the case where the data can be treated as independent and
#' identically distributed (i.i.d.) observations.  For example, it could be
#' that these observations are the cluster maxima resulting from the
#' declustering of time series data.  The predictive ability of models
#' fitted using each of a user-supplied set of thresholds is assessed using
#' leave-one-out cross-validation in a Bayesian setup.
#' These models are based on a Generalized Pareto (GP) distribution for
#' threshold excesses and a binomial model for the probability of threshold
#' exceedance.  See
#' \href{https://doi.org/10.1111/rssc.12159}{Northrop et al. (2017)}
#' for details.
#'
#' @param data  A numeric vector of observations.  Any missing values will
#'   be removed.  The argument \code{npy} (see below) may be supplied
#'   as an attribute of \code{data} using \code{attr(data, "npy") <- value},
#'   where \code{value} is the value of \code{npy} (see \code{\link{attr}}).
#'   If \code{npy} is supplied twice, as both \code{attr(data, "npy")})
#'   and using the \code{npy} argument, then the former is used.
#' @param u_vec A numeric vector. A vector of \emph{training} thresholds
#'   at which inferences are made from a binomial-GP model.  These could be
#'   set at sample quantiles of  \code{data} using
#'   \code{\link[stats]{quantile}}.  Any duplicated values will be removed.
#' @param ... Further (optional) arguments to be passed to the
#'   \code{\link[revdbayes]{revdbayes}} function
#'   \code{\link[revdbayes]{rpost_rcpp}} (or \code{\link[revdbayes]{rpost}}),
#'   which use the generalized ratio-of-uniforms method to simulate from
#'   extreme value posterior distributions.
#'   In particular:
#' \itemize{
#'   \item {\code{n}} {The size of the posterior sample used to perform
#'     predictive inference.  Default: \code{n = 1000}.}
#'   \item {\code{prior}} {A prior for GP parameters to be passed to the
#'     \strong{revdbayes} function \code{\link[revdbayes]{set_prior}}.
#'     Can be either a character scalar that chooses an in-built prior,
#'     or a user-supplied R function or pointer to a compiled C++ function.
#'     See the \code{\link[revdbayes]{set_prior}} documentation for details
#'     of the in-built priors.
#'     See the \strong{revdbayes} vignette
#'     \href{https://cran.r-project.org/package=revdbayes}{Faster simulation
#'     using revdbayes} for information about creating
#'     a pointer to a C++ function. See also the \strong{Examples} section.
#'
#'     If the user supplies and R function then \code{\link{rpost}} will be
#'     used for posterior simulation, rather than (the faster)
#'     \code{\link{rpost_rcpp}}, regardless of the input value of
#'     \code{use_rcpp}.
#'
#'     Default: \code{prior = "mdi"} with \code{a = 0.6} and \code{min_xi = -1}.
#'     This particular prior is studied in
#'     \href{https://doi.org/10.1111/rssc.12159}{Northrop et al. (2017)}}.
#'   \item {\code{h_prior}} {A \emph{list} of further arguments
#'     (hyperparameters) for the GP prior specified in \code{prior}.}
#'   \item {\code{bin_prior}} {A character scalar that chooses an in-built
#'     prior for the threshold exceedance probability \eqn{p}, to be passed to
#'     the \strong{revdbayes} function \code{\link[revdbayes]{set_bin_prior}}.
#'     only relevant if \code{prior == "beta"}.
#'
#'     Default: \code{prior = "jeffreys"}, i.e. Beta(1/2, 1/2).}
#'   \item {\code{h_bin_prior}} {A \emph{list} of further arguments
#'     (hyperparameters) for the binomial prior specified in \code{bin_prior}.
#'     See the \code{\link[revdbayes]{set_bin_prior}} documentation for details
#'     of the in-built priors.}
#'   \item {\code{trans}} {A character scalar: either \code{"none"} or
#'     \code{"BC"}.  See \code{\link{rpost_rcpp}} for details.
#'     The default is \code{"none"}, which is usually faster than \code{"BC"}.
#'     However, if there are very few threshold excesses then using
#'     \code{trans = "BC"} can make the optimizations involved in the
#'     generalized ratio-of-uniforms algorithm more stable.  If using
#'     \code{trans = "none"} produces an error for a particular posterior
#'     simulation then \code{trans = "BC"} is used instead.}
#' }
#' @param n_v A numeric scalar.
#'   Each of the \code{n_v} largest values in \code{u_vec} will be used
#'   (separately) as a \emph{validation} threshold for the training thresholds
#'   in \code{u_vec} that lie at or below that validation threshold.
#'   If \code{n_v = 1} then all the training thresholds are used with
#'   validation performed using the threshold \code{u_vec[length(u_vec)]}.
#'   If \code{n_v = 2} then, in addition, the assessment is performed using
#'   \code{u_vec[1], ..., u_vec[length(u_vec) - 1]} with
#'   validation threshold \code{u_vec[length(u_vec) - 1]},
#'   and so on.
#' @param npy A numeric scalar. The mean number of observations per year
#'   of data, after excluding any missing values, i.e. the number of
#'   non-missing observations divided by total number of years of non-missing
#'   data.  May be supplied using as an attribute \code{attr(data, "npy")}
#'   of \code{data} instead.
#'
#'   The value of \code{npy} does not affect any calculation in
#'   \code{ithresh}, it only affects subsequent extreme value inferences using
#'   \code{predict.ithresh}.  However, setting \code{npy} in the call to
#'   \code{rpost}, or as an attribute of \code{data} avoids the need to
#'   supply \code{npy} when calling \code{predict.ithresh}.
#' @param use_rcpp A logical scalar.  If \code{TRUE} (the default) the
#'   revdbayes function \code{\link[revdbayes]{rpost_rcpp}} is used for
#'   posterior simulation.  If \code{FALSE}, or if the user supplies an R
#'   function to set the prior for GP parameters,
#'   the (slower) function \code{\link[revdbayes]{rpost}} is used.
#' @details For a given threshold in \code{u_vec}:
#' \itemize{
#'   \item {the number of values in \code{data} that exceed the threshold,
#'     and the amounts (the \emph{threshold excesses}) by which these value
#'     exceed the threshold are calculated;}
#'   \item {\code{\link[revdbayes]{rpost_rcpp}}
#'     (or \code{\link[revdbayes]{rpost}}) is used to sample from the posterior
#'     distributions of the parameters of a GP model for the threshold
#'     excesses and a binomial model for the probability of threshold
#'     exceedance;}
#'   \item {the ability of this binomial-GP model to predict data
#'     thresholded at the validation threshold(s) specified by \code{n_v} is
#'     assessed using leave-one-out cross-validation (the measure of
#'     this is given in equation (7) of
#'     \href{https://doi.org/10.1111/rssc.12159}{Northrop et al. (2017)}).}
#' }
#'   See \href{https://doi.org/10.1111/rssc.12159}{Northrop et al. (2017)}
#'   and the introductory threshr vignette for further details and examples.
#' @return An object (list) of class \code{"ithresh"}, containing the
#'   components
#'   \itemize{
#'     \item{\code{pred_perf}:} A numeric matrix with \code{length(u_vec)}
#'     rows and \code{n_v} columns.  Each column contains the values of
#'     the measure of predictive performance.  Entries corresponding
#'     to cases where the training threshold is above the validation
#'     threshold will be \code{NA}.
#'     \item{\code{u_vec}:} The argument \code{u_vec} to \code{ithresh}.
#'     \item{\code{v_vec}:} A numeric vector.  The validation thresholds
#'       implied by the argument \code{n_v} to \code{ithresh}.
#'     \item{\code{u_ps}:} A numeric vector. The approximate levels of the
#'       sample quantiles to which the values in \code{u_vec} correspond,
#'       i.e. the approximate percentage of the data the lie at or below
#'       each element in \code{u_vec}.
#'     \item{\code{v_ps}:} A numeric vector.  The values in \code{u_ps}
#'       that correspond to the validation thresholds.
#'     \item{\code{sim_vals}:} A numeric matrix with 4 columns and
#'       \code{n} x \code{length(u_vec)} rows.  The \eqn{j}th block of
#'       \code{n} rows contains in columns 1-3 the posterior samples of
#'       the threshold exceedance probability, the GP scale
#'       parameter and the GP shape parameter respectively, and in
#'       column 4 the value of \eqn{j}.
#'     \item{\code{n}:} A numeric scalar.  The value of \code{n}.
#'     \item{\code{npy}:} A numeric scalar.  The value of \code{npy}.
#'     \item{\code{data}:} The argument \code{data} to \code{ithresh}
#'       detailed above, with any missing values removed.
#'     \item{\code{use_rcpp}:} A logical scalar indicating whether
#'       \code{\link[revdbayes]{rpost_rcpp}} (\code{use_rcpp = TRUE}) or
#'       \code{\link[revdbayes]{rpost}} (\code{use_rcpp = FALSE})
#'       was used for posterior simulation.
#'     \item{\code{for_post}:} A list containing arguments with which
#'       \code{\link[revdbayes]{rpost_rcpp}}
#'       (or \code{\link[revdbayes]{rpost}}) was called, including
#'       any user-supplied arguments to these functions.
#'   }
#' @seealso \code{\link{plot.ithresh}} for the S3 plot method for objects of
#'   class \code{ithresh}.
#' @seealso \code{\link{summary.ithresh}} Summarizing measures of threshold
#'   predictive performance.
#' @seealso \code{\link{predict.ithresh}} for predictive inference for the
#'   largest value observed in N years.
#' @seealso \code{\link[revdbayes]{rpost}} in the
#'   \code{\link[revdbayes]{revdbayes}} package for details of the arguments
#'   that can be passed to
#'   \code{\link[revdbayes]{rpost_rcpp}}/\code{\link[revdbayes]{rpost}}.
#' @seealso \code{\link[revdbayes]{set_prior}} and
#'   \code{\link[revdbayes]{set_bin_prior}} in the
#'   \code{\link[revdbayes]{revdbayes}} package for details of how to set a
#'   prior distributions for GP parameters and for the exceedance probability
#'   \eqn{p}.
#' @seealso \code{\link[stats]{quantile}}.
#' @examples
#' # Note:
#' # 1. Smoother plots result from making n larger than the default n = 1000.
#' # 2. In the examples below validation thresholds rather higher than is
#' #    advisable have been used, with far fewer excesses than the minimum of
#' #    50 suggested by Jonathan and Ewans (2013).
#'
#' ## North Sea significant wave heights, default prior -----------------------
#' #' # A plot akin to the top left of Figure 7 in Northrop et al. (2017)
#' #' # ... but with fewer training thresholds
#'
#' u_vec_ns <- quantile(ns, probs = seq(0.05, 0.95, by = 0.1))
#' ns_cv <- ithresh(data = ns, u_vec = u_vec_ns, n_v = 3)
#' plot(ns_cv, lwd = 2, add_legend = TRUE, legend_pos = "topright")
#' mtext("significant wave height / m", side = 3, line = 2.5)
#'
#' ## Gulf of Mexico significant wave heights, default prior ------------------
#'
#' u_vec_gom <- quantile(gom, probs = seq(0.25, 0.95, by = 0.1))
#' # Setting a prior using its name and parameter value(s) --------------------
#' # This example gives the same prior as the default
#' gom_cv <- ithresh(data = gom, u_vec = u_vec_gom, n_v = 4, prior = "mdi",
#'                   h_prior = list(a = 0.6))
#'
#' ## Setting a user-defined (log-)prior R function ---------------------------
#' # This example also gives the same prior as the default
#' # (It will take longer to run than the example above because ithresh detects
#' #  that the prior is an R function and sets use_rcpp to FALSE.)
#' \donttest{
#' user_prior <- function(pars, a, min_xi = -1) {
#'   if (pars[1] <= 0 | pars[2] < min_xi) {
#'     return(-Inf)
#'   }
#'   return(-log(pars[1]) - a * pars[2])
#' }
#' gom_cv <- ithresh(data = gom, u_vec = u_vec_gom, n_v = 4, prior = user_prior,
#'                   h_prior = list(a = 0.6))
#' }
#' ## Setting a user-defined (log-)prior (pointer to a) C++ function ----------
#' # We make use of a C++ function and function create_prior_xptr() to create
#' # the required pointer from the revdbayes package
#'
#' prior_ptr <- revdbayes:::create_prior_xptr("gp_flat")
#' gom_cv <- ithresh(data = gom, u_vec = u_vec_gom, n_v = 4, prior = prior_ptr,
#'                   h_prior = list(min_xi = -1))
#' @references Northrop, P.J. and Attalides, N. (2016) Posterior propriety in
#'   Bayesian extreme value analyses using reference priors
#'   \emph{Statistica Sinica}, \strong{26}(2), 721--743
#'   \url{http://dx.doi.org/10.5705/ss.2014.034}.
#' @references Northrop, P. J., Attalides, N. and Jonathan, P. (2017)
#'   Cross-validatory extreme value threshold selection and uncertainty
#'   with application to ocean storm severity.
#'   \emph{Journal of the Royal Statistical Society Series C: Applied
#'   Statistics}, \strong{66}(1), 93-120.
#'   \url{http://dx.doi.org/10.1111/rssc.12159}
#' @references Jonathan, P. and Ewans, K. (2013) Statistical modelling
#'   of extreme ocean environments for marine design : a review.
#'   \emph{Ocean Engineering}, \strong{62}, 91-109.
#'   \url{http://dx.doi.org/10.1016/j.oceaneng.2013.01.004}
#' @export
ithresh <- function(data, u_vec, ..., n_v = 1, npy = NULL, use_rcpp = TRUE) {
  # Store npy (if it has been supplied)
  if (!is.null(attr(data, "npy"))) {
    return_npy <- attr(data, "npy")
  }
  if (!is.null(npy) & !is.null(attr(data, "npy"))) {
    warning(paste("Two values of npy supplied.  attr(data, ''npy'') = ",
                  return_npy, " will be returned.", sep=""),
            immediate. = TRUE)
  } else if (!is.null(npy)) {
    return_npy <- npy
  } else if (is.null(attr(data, "npy"))) {
    return_npy <- NULL
  }
  # Remove missing values from data
  data <- as.numeric(stats::na.omit(data))
  # Put thresholds in ascending order and remove any repeated values.
  u_vec <- unique(sort(u_vec))
  n_u <- length(u_vec)
  # Check that the highest threshold is lower than the largest observation.
  if (u_vec[n_u] >= max(data)) {
    stop("max(u_vec) must be less than max(data)")
  }
  if (n_v > n_u) {
    n_v <- n_u
    warning("n_v has been set to length(u_vec)")
  }
  v_vec <- u_vec[(n_u - n_v + 1):n_u]
  temp <- cv_fn(data = data, u_vec = u_vec, v_vec = v_vec, n_u = n_u,
                n_v = n_v, use_rcpp = use_rcpp, ...)
  if (is.null(names(u_vec))) {
    temp$u_ps <- round(100 * sapply(u_vec, function(x) mean(data < x)))
  } else {
    temp$u_ps <- as.numeric(substr(names(u_vec), 1, nchar(names(u_vec),
                                                     type = "c") - 1))
  }
  if (is.null(names(v_vec))) {
    temp$v_ps <- round(100 * sapply(v_vec, function(x) mean(data < x)))
  } else {
    temp$v_ps <- as.numeric(substr(names(v_vec), 1, nchar(names(v_vec),
                                                     type = "c") - 1))
  }
  if (!is.null(return_npy)) {
    temp$npy <- return_npy
  }
  temp$data <- data
  class(temp) <- "ithresh"
  return(temp)
}

# =========================== cv_fn ===========================

cv_fn <- function(data, u_vec, v_vec, n_u, n_v, use_rcpp, ...) {
  # Extract arguments for passing to revdbayes function rpost -----------------
  # GP prior.
  cv_control <- list(...)
  # If prior is a (user-supplied) R function then set use_rcpp = FALSE
  if (is.function(cv_control$prior)) {
    use_rcpp <- FALSE
  }
  if (is.null(cv_control$prior)) {
    cv_control$prior <- "mdi"
  }
  if (is.null(cv_control$h_prior$min_xi)) {
    cv_control$h_prior$min_xi <- -1
  }
  if (is.character(cv_control$prior)) {
    if (cv_control$prior == "mdi" & is.null(cv_control$h_prior$a)) {
      cv_control$h_prior$a <- 0.6
    }
  }
  for_set_prior <- c(list(prior = cv_control$prior, model = "gp"),
                     cv_control$h_prior)
  gp_prior <- do.call(revdbayes::set_prior, for_set_prior)
  cv_control$prior <- NULL
  cv_control$h_prior <- NULL
  # Binomial prior.
  if (is.null(cv_control$bin_prior)) {
    cv_control$bin_prior <- "jeffreys"
  }
  for_set_bin_prior <- c(list(prior = cv_control$bin_prior),
                         cv_control$h_bin_prior)
  bin_prior <- do.call(revdbayes::set_bin_prior, for_set_bin_prior)
  cv_control$bin_prior <- NULL
  cv_control$h_bin_prior <- NULL
  # Size of samples from posterior distributions.
  if (is.null(cv_control$n)) {
    n <- 1000
  } else {
    n <- cv_control$n
  }
  cv_control$n <- NULL
  # Check for arguments passed in ... that are not formal arguments of
  # rpost_rcpp/rpost or ru_rcpp/ru.
  in_rpost <- names(cv_control) %in% methods::formalArgs(revdbayes::rpost_rcpp)
  in_ru <- names(cv_control) %in% methods::formalArgs(rust::ru_rcpp)
  rogue_names <- !in_rpost & !in_ru
  rogue_args <- cv_control[rogue_names]
  if (length(rogue_args) > 0) {
    warning("The following arguments have been ignored", immediate. = TRUE)
    print(rogue_args)
    cv_control[rogue_names] <- NULL
  }
  # Set up quantities for passing to revdbayes::rpost()
  # Locate the largest observation(s) in the data.
  j_max <- which(data == max(data))
  data_max <- data[j_max]
  n_max <- length(data_max)
  # Remove (one of the) the largest observation(s)
  data_rm <- data[-j_max[1]]
  n_rm <- length(data_rm)
  #
  # A matrix to store the measures of predictive performance.
  pred_perf <- matrix(NA, nrow = n_u, ncol = n_v)
  pred_perf_rcpp <- matrix(NA, nrow = n_u, ncol = n_v)
  # Set the revdbayes posterior simulation function.
  if (use_rcpp) {
    gp_postsim <- revdbayes::rpost_rcpp
  } else {
    gp_postsim <- revdbayes::rpost
  }
  #
  for_post <- c(list(n = n, model = "bingp", prior = gp_prior,
                     bin_prior = bin_prior), cv_control)
  # A matrix to store the posterior samples for each threshold
  sim_vals <- matrix(NA, ncol = 4, nrow = n * n_u)
  # Loop over the training thresholds -------------------------------------
  for (i in 1:n_u){
    u <- u_vec[i]
    # Simulation from posterior distributions.
    #
    # If an error occurs (this can sometimes happen if there are few excesses)
    # then try trans = "BC".  This tends to be slower but the Box-Cox
    # transformation towards normality can improve stability of the
    # ratio-of-uniforms boxing optimizations.  If trans = "BC" was used already
    # then try trans = "none".
    #
    # Simulate from (full) bin-GP posterior.
    temp <- try(do.call(gp_postsim, c(for_post, list(data = data,
                                                     thresh = u))),
                silent = TRUE)
    if (inherits(temp, "try-error")) {
      if (is.null(cv_control$trans) || cv_control == "none") {
        try_other_trans <- "BC"
      } else {
        try_other_trans <- "none"
      }
      new_for_post <- c(for_post, trans = try_other_trans)
      temp <- do.call(gp_postsim, c(new_for_post, list(data = data,
                                                       thresh = u)))
    }
    # Simulate from the bin-GP posterior after removal of the maximum value
    temp_rm <- try(do.call(gp_postsim, c(for_post, list(data = data_rm,
                                                        thresh = u))),
                   silent = TRUE)
    if (inherits(temp_rm, "try-error")) {
      if (is.null(cv_control$trans) || cv_control == "none") {
        try_other_trans <- "BC"
      } else {
        try_other_trans <- "none"
      }
      new_for_post <- c(for_post, trans = try_other_trans)
      temp_rm <- do.call(gp_postsim, c(new_for_post, list(data = data_rm,
                                                          thresh = u)))
    }
    # Combine binomial and GP posterior simulated values.
    theta <- cbind(temp$bin_sim_vals, temp$sim_vals)
    theta_rm <- cbind(temp_rm$bin_sim_vals, temp_rm$sim_vals)
    # Carry out leave-one-out Bayesian cross-validation -------------------
    which_v <- which(v_vec >= u)
    v_vals <- v_vec[which_v]           # select the validation thresholds
    pred_perf[i, which_v] <- bloocv(z = data, theta = theta,
                                    theta_rm = theta_rm, u1 = u,
                                    u2_vec = v_vals, z_max = data_max,
                                    z_rm = data_rm, n = n)
    # Save the posterior samples values
    which_rows <- (1 + (i - 1) * n):(i * n)
    sim_vals[which_rows, ] <- cbind(theta, i)
  }
  temp <- list(pred_perf = pred_perf, u_vec = u_vec, v_vec = v_vec,
               sim_vals = sim_vals, n = n, for_post = for_post,
               use_rcpp = use_rcpp)
  return(temp)

}

# =========================== new_bloocv ===========================

bloocv <- function(z, theta, theta_rm, u1, u2_vec, z_max, z_rm, n){
  #
  n1 <- sum(z_rm <= u1)      # number of values that do not exceed u1
  z_gt_u1 <- z_rm[z_rm > u1] # data greater than u1 (not including maximum)
  n2 <- length(u2_vec)       # number of validation thresholds considered
  n_max <- length(z_max)     # cardinality of max(z)
  #
  # Posterior samples of (p,sigma,xi) at training threshold u1 ...
  p1 <- theta[, 1]           # p.u from posterior sample
  sigma_1 <- theta[, 2]
  xi <- theta[, 3]
  xi_near_0 <- abs(xi) < 1e-6
  pow1 <- -1 / xi
  pow2 <- -1 + pow1
  mp1 <- 1 / (1 - p1)
  # Probability of exceeding validation threshold u2, for each u2
  p_gt_u2 <- function(x) {
    xx <- (x - u1) / sigma_1
    ifelse(xi_near_0, exp(-xx + xi * xx ^ 2 / 2), (1 + xi * xx) ^ pow1)
  }
  templ <- numeric(n)
  p_2_vec <- p1 * vapply(u2_vec, p_gt_u2, templ)
  # n.sim by (1+length(u2_vec)) matrix
  # bin-GP density at each observation greater than u1
  f_gt_u1 <- function(x) {
    xx <- (x - u1) / sigma_1
    ifelse(xi_near_0, exp(-xx + xi * xx * (xx - 2) / 2), (1 + xi * xx) ^ pow2)
  }
  fgp_r <- vapply(z_gt_u1, f_gt_u1, templ) / sigma_1
  #
  temp <- p1 * fgp_r
  p2 <- p_2_vec
  #
  #----------------------- Function pred_u2 ---------------------------#
  pred_u2 <- function(k) {
    # Contribution for each z that is less than or equal to u1
    t1 <- 1
    if (n1 > 0) {
      t1 <- mean((1 - p2[, k]) * mp1) / mean(mp1)
    }
    # Contributions from zs that are in (u1,u2]
    t2 <- 1
    if (min(z_gt_u1) <= u2_vec[k]) {
      w2 <- which(z_gt_u1 <= u2_vec[k])
      fr2 <- temp[, w2, drop = FALSE]
      mp2 <- 1 / fr2
      t2 <- colMeans((1 - p2[, k]) * mp2) / colMeans(mp2)
    }
    # Contributions from zs that are greater than u2
    t3 <- 1
    if (max(z_gt_u1) > u2_vec[k]) {
      w3 <- which(z_gt_u1 > u2_vec[k])
      fr3 <- temp[, w3, drop = FALSE]
      t3 <- 1 / colMeans(1 / fr3)
    }
    #
    return(n1 * log(t1) + sum(log(t2)) + sum(log(t3)))
  }
  #--------------------- End of function pred_u2 ----------------------#
  #
  t123 <- vapply(1:n2, pred_u2, 0)
  #
  # Contribution from z_max
  p1 <- theta_rm[, 1]
  sigma_1 <- theta_rm[, 2]
  xi <- theta_rm[, 3]
  xi_near_0 <- abs(xi) < 1e-6
  pow2 <- -(1 + 1 / xi)
  # bin-GP density at max(z)
  xx <- (z_max - u1) / sigma_1
  lin_max <- 1 + xi * xx
  t4 <- ifelse(lin_max > 0,
               ifelse(xi_near_0, exp(-xx + xi * xx * (xx - 2) / 2),
                      lin_max ^ pow2),
               0)
  t4 <- mean(p1 * t4 / sigma_1)
  #
  return(t123 + n_max * log(t4))
}

Try the threshr package in your browser

Any scripts or data that you put into this service are public.

threshr documentation built on Sept. 4, 2017, 9:03 a.m.