Nothing
skip_if_not_installed("hierfstat")
test_genotypes <- rbind(
c(1, 1, 0, 1, 1, 0),
c(2, 1, 0, NA, 0, 0),
c(2, NA, 0, 0, 1, 1),
c(1, 0, 0, 1, 0, 0),
c(1, 2, 0, 1, 2, 1),
c(0, 0, 0, 0, NA, 1),
c(0, 1, 1, 0, 1, NA)
)
test_indiv_meta <- data.frame(
id = c("a", "b", "c", "d", "e", "f", "g"),
population = c("pop1", "pop1", "pop2", "pop2", "pop1", "pop3", "pop3")
)
test_loci <- data.frame(
name = paste0("rs", 1:6),
chromosome = paste0("chr", c(1, 1, 1, 1, 2, 2)),
position = as.integer(c(3, 5, 65, 343, 23, 456)),
genetic_dist = as.double(rep(0, 6)),
allele_ref = c("A", "T", "C", "G", "C", "T"),
allele_alt = c("T", "C", NA, "C", "G", "A")
)
test_gt <- gen_tibble(
x = test_genotypes,
loci = test_loci,
indiv_meta = test_indiv_meta,
quiet = TRUE
)
test_that("pop_* basic stats functions work correctly", {
test_gt <- test_gt %>% dplyr::group_by(population)
test_hier <- gt_as_hierfstat(test_gt)
basic_hier <- hierfstat::basic.stats(test_hier)
# observed heterozygosity by locus
test_het_obs <- test_gt %>% pop_het_obs(by_locus = TRUE)
expect_true(all.equal(
basic_hier$Ho,
round(test_het_obs, 4),
check.attributes = FALSE
))
# overall (mean of by locus values)
test_het_obs <- test_gt %>% pop_het_obs(by_locus = FALSE)
expect_true(all.equal(
colMeans(basic_hier$Ho, na.rm = TRUE),
test_het_obs,
check.attributes = FALSE
))
# check the overall value
test_het_obs <- test_gt %>%
pop_het_obs(by_locus = TRUE, include_global = TRUE)
expect_true(all.equal(
round(test_het_obs[, 4], 4),
basic_hier$perloc$Ho,
check.attributes = FALSE
))
test_het_obs <- test_gt %>%
pop_het_obs(by_locus = FALSE, include_global = TRUE)
expect_true(all.equal(
round(test_het_obs[4], 4),
basic_hier$overall["Ho"],
check.attributes = FALSE
))
# test expected heterozygosity by locus
test_het_exp <- test_gt %>% pop_het_exp(by_locus = TRUE)
expect_true(all.equal(
basic_hier$Hs,
round(test_het_exp, 4),
check.attributes = FALSE
))
# overall (mean of by locus values)
test_het_exp <- test_gt %>% pop_het_exp(by_locus = FALSE)
expect_true(all.equal(
colMeans(basic_hier$Hs, na.rm = TRUE),
test_het_exp,
check.attributes = FALSE
))
# check the overall value
test_het_exp <- test_gt %>%
pop_het_exp(by_locus = TRUE, include_global = TRUE)
expect_true(all.equal(
round(test_het_exp[, 4], 4),
basic_hier$perloc$Hs,
check.attributes = FALSE
))
test_het_exp <- test_gt %>%
pop_het_exp(by_locus = FALSE, include_global = TRUE)
expect_true(all.equal(
round(test_het_exp[4], 4),
basic_hier$overall["Hs"],
check.attributes = FALSE
))
# test Fis by locus
test_fis <- test_gt %>% pop_fis(by_locus = TRUE, method = "Nei87")
expect_true(all.equal(
basic_hier$Fis,
round(test_fis, 4),
check.attributes = FALSE
))
# overall (mean of by locus values)
test_fis <- test_gt %>% pop_fis(by_locus = FALSE)
expect_true(all.equal(
round(colMeans(basic_hier$Fis, na.rm = TRUE), 4),
round(test_fis, 4),
check.attributes = FALSE
))
# check the overall value
test_fis <- test_gt %>% pop_fis(by_locus = TRUE, include_global = TRUE)
expect_true(all.equal(
round(test_fis[, 4], 4),
basic_hier$perloc$Fis,
check.attributes = FALSE
))
test_fis <- test_gt %>% pop_fis(by_locus = FALSE, include_global = TRUE)
expect_true(all.equal(
round(test_fis[4], 4),
basic_hier$overall["Fis"],
check.attributes = FALSE
))
# test global stats by locus
test_global_stats <- test_gt %>% pop_global_stats(by_locus = TRUE)
expect_true(all.equal(
basic_hier$perloc,
round(test_global_stats, 4),
check.attributes = FALSE
))
# test global stats overall
test_global_stats <- test_gt %>% pop_global_stats(by_locus = FALSE)
expect_true(all.equal(
basic_hier$overall,
round(test_global_stats, 4),
check.attributes = FALSE
))
# test Fis errors for incorrect parameters for Nei87
expect_error(
test_gt %>%
pop_fis(
by_locus = TRUE,
method = "Nei87",
allele_sharing_mat = matrix(1, nrow = 7, ncol = 7)
),
"allele_sharing_mat not relevant for Nei87"
)
# test Fis errors for incorrect parameters for WG17
expect_error(
test_gt %>%
pop_fis(
by_locus = TRUE,
method = "WG17",
allele_sharing_mat = matrix(1, nrow = 7, ncol = 7)
),
"by_locus not implemented for WG17"
)
# test alias for pop_het_exp
expect_identical(
test_het_exp,
test_gt %>% pop_gene_div(by_locus = FALSE, include_global = TRUE)
)
})
test_that("pop_* basic stats work on a single population", {
test_het_obs <- test_gt %>% pop_het_obs(by_locus = TRUE)
# just one column, as we only have one population
expect_true(ncol(test_het_obs) == 1)
test_fis <- test_gt %>% pop_fis(by_locus = TRUE)
# just one column, as we only have one population
expect_true(ncol(test_fis) == 1)
test_het_exp <- test_gt %>% pop_het_exp(by_locus = TRUE)
# just one column, as we only have one population
expect_true(ncol(test_het_exp) == 1)
test_global_stats <- test_gt %>% pop_global_stats(by_locus = TRUE)
expect_true(all(is.nan(test_global_stats$Fstp)))
# Fstp is not defined for a single population
})
test_that("n_cores can be set", {
# pop_het_obs
one_core <- test_gt %>% pop_het_obs(by_locus = TRUE, n_cores = 1)
two_core <- test_gt %>% pop_het_obs(by_locus = TRUE, n_cores = 2)
expect_equal(one_core, two_core)
# pop_het_exp
one_core <- test_gt %>% pop_het_exp(by_locus = TRUE, n_cores = 1)
two_core <- test_gt %>% pop_het_exp(by_locus = TRUE, n_cores = 2)
expect_equal(one_core, two_core)
# pop_global_stats
one_core <- test_gt %>% pop_global_stats(by_locus = TRUE, n_cores = 1)
two_core <- test_gt %>% pop_global_stats(by_locus = TRUE, n_cores = 2)
expect_equal(one_core, two_core)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.