R/sample_background.R

Defines functions sample_background

Documented in sample_background

#' Sample background points for SDM analysis
#'
#' This function samples background points from a raster given a set of
#' presences. The locations returned as the center points of the sampled cells,
#' which can overlap with the presences (in contrast to pseudo-absences, see
#' [sample_pseudoabs]). The following methods are implemented:
#' * 'random': background randomly sampled from the region covered by the
#' raster (i.e. not NAs).
#' * 'dist_max': background randomly sampled from the unioned buffers
#' of 'dist_max' from presences (distances in 'm' for lonlat rasters, and in map
#' units for projected rasters). Using the union of buffers means that areas
#' that are in multiple buffers are not oversampled. This is also referred to as
#' "thickening".
#' * 'bias': background points are sampled according to a surface representing
#' the biased sampling effort.
#'
#' Note that the units of distance depend on the projection of the raster.
#' @param data An [`sf::sf`] data frame, or a data frame with coordinate
#'   variables. These can be defined in `coords`, unless they have standard
#'   names (see details below).
#' @param raster the [terra::SpatRaster] or `stars` from which cells will be
#'   sampled (the first layer will be used to determine which cells are NAs, and
#'   thus can not be sampled). If sampling is "bias", then the sampling
#'   probability will be proportional to the values on the first layer (i.e.
#'   band) of the raster.
#' @param n number of background points to sample.
#' @param coords a vector of length two giving the names of the "x" and "y"
#'   coordinates, as found in `data`. If left to NULL, the function will try to
#'   guess the columns based on standard names `c("x", "y")`, `c("X","Y")`,
#'   `c("longitude", "latitude")`, or `c("lon", "lat")`.
#' @param method sampling method. One of 'random', 'dist_max', and 'bias'. For
#'   dist_max, the maximum distance is set as an additional element of a vector,
#'   e.g c('dist_max',70000).
#' @param class_label the label given to the sampled points. Defaults to
#'   `background`
#' @param return_pres return presences together with background in a single
#'   tibble.
#' @returns An object of class [tibble::tibble]. If presences are returned, the
#'   presence level is set as the reference (to match the expectations in the
#'   `yardstick` package that considers the first level to be the event).
#' @export


sample_background <- function(data, raster, n, coords = NULL,
                              method = "random", class_label = "background",
                              return_pres = TRUE) {
  if (inherits(raster, "stars")) raster <- as(raster, "SpatRaster")
  return_sf <- FALSE # flag whether we need to return an sf object
  if (inherits(data, "sf")) {
    bind_col <- TRUE
    if (all(c("X", "Y") %in% names(data))) {
      if (any(is.na(data[, c("X", "Y")]))) {
        stop("sf object contains NA values in the X and Y coordinates")
      } else if (all(
        sf::st_drop_geometry(data[, c("X", "Y")]) ==
          sf::st_coordinates(data)
      )) {
        bind_col <- FALSE
      } else {
        stop(
          "sf object contains X and Y coordinates that do not match ",
          "the sf point geometry"
        )
      }
    }
    if (bind_col) {
      data <- data %>% dplyr::bind_cols(sf::st_coordinates(data))
    }
    crs_from_sf <- sf::st_crs(data)
    return_sf <- TRUE
  }
  coords <- check_coords_names(data, coords)
  dist_max <- NULL
  if (method[1] == "dist_max") {
    if (length(method) != 2) {
      stop("method 'dist_max' should have one threshold, e.g. c('dist_max',50)")
    }
    dist_max <- as.numeric(method[2])
  } else if (!method[1] %in% c("random", "bias")) {
    stop("method has to be one of 'random', 'dist_max', or 'bias'")
  }
  xy_pres <- as.matrix(as.data.frame(data)[, coords])
  # get a one layer raster
  sampling_raster <- raster[[1]]
  names(sampling_raster) <- "class"

  # remove buffer >dist_max
  if (!is.null(dist_max)) {
    max_buffer <- terra::buffer(
      terra::vect(xy_pres,
        crs = terra::crs(sampling_raster)
      ),
      dist_max
    )
    sampling_raster <- terra::mask(sampling_raster, max_buffer, touches = FALSE)
  }


  # now sample points
  # cell ids excluding NAs
  cell_id <- terra::cells(sampling_raster)
  # if bias extract the bias values to use as weights for sampling
  if (method[1] == "bias") {
    bias <- terra::extract(raster, cell_id)
    bias <- bias[, 1] / sum(bias[, 1])
  } else {
    bias <- NULL
  }
  if (length(cell_id) > n) {
    cell_id <- sample(x = cell_id, size = n, prob = bias, replace = FALSE)
  } else {
    warning(
      "There are fewer available cells for raster '",
      terra::time(sampling_raster), "' (", nrow(xy_pres),
      " presences) than the requested ", n,
      " background points. Only ", length(cell_id),
      " will be returned.\n"
    )
  }
  background <- as.data.frame(terra::xyFromCell(sampling_raster, cell_id))
  # fix the coordinate names to be the same we started with
  names(background) <- coords
  background <- background %>% dplyr::mutate(class = class_label)
  if (return_pres) {
    presences <- dplyr::as_tibble(xy_pres) %>%
      dplyr::mutate(class = "presence")
    background <- presences %>%
      dplyr::bind_rows(background) %>%
      dplyr::mutate(class = stats::relevel(factor(class), ref = "presence"))
  }
  # remove X and Y that were added to the sf object
  if (return_sf) {
    background <- sf::st_as_sf(background, coords = coords) %>%
      sf::st_set_crs(crs_from_sf)
  }
  return(background)
}

Try the tidysdm package in your browser

Any scripts or data that you put into this service are public.

tidysdm documentation built on April 3, 2025, 9:56 p.m.