R/tipmap_plot.R

Defines functions tipmap_plot

Documented in tipmap_plot

#' Visualize tipping point analysis
#'
#' @description
#' Uses a data frame created by \code{create_tipmap_data()} to visualize the tipping point analysis.
#'
#' @param tipmap_data A data frame containing tipping point data, generated by \code{create_tipmap_data()}.
#' @param target_pop_lab A label for the trial in the target population.
#' @param y_range An optional argument specifying range of the y-axis.
#' @param y_breaks An optional vector specifying breaks on the y-axis.
#' @param title The plot title.
#' @param y_lab The label for the y axis. Defaults to "Mean difference".
#' @param x_lab The label for the x axis. Defaults to "Weight on informative component of MAP prior".
#' @param map_prior_lab The label for the MAP prior. Defaults to "MAP prior"
#' @param meta_analysis_lab An optional label for a meta-analysis (if included).
#' @param legend_title An optional title for the plot legend. Defaults to "Posterior quantiles".
#' @param null_effect The null treatment effect, determining where tipping points are calculated. Defaults to 0.
#'
#' @export
#' @seealso \code{\link{create_tipmap_data}}
#' @return A \code{ggplot} object of the tipping point plot
#' @examples
#'
#' tipmap_data <- load_tipmap_data("tipdat.rds")
#' tipmap_plot(tipmap_data)
#'
tipmap_plot <-
  function(tipmap_data,
           target_pop_lab = "Trial in target\n population",
           y_range = NULL,
           y_breaks = NULL,
           title = NULL,
           y_lab = "Mean difference",
           x_lab = "Weight on informative component of MAP prior",
           map_prior_lab = "MAP\nprior",
           meta_analysis_lab = "MA",
           legend_title = "Posterior quantile",
           null_effect = 0) {
    if (!(is.numeric(null_effect)))
      stop("`null_effect` must be numeric")
    if (!(is.data.frame(tipmap_data)))
      stop("`tipmap_data` must be a data frame. Use create_tipmap_data()")

    if (nrow(dplyr::filter(tipmap_data, x.col == "prior")) == 2) {
      x.labels <-
        c(target_pop_lab,
          seq(from = 0, to = 1, by = .1),
          map_prior_lab,
          meta_analysis_lab)
      x.breaks <- c(-0.15, seq(from = 0, to = 1, by = .1), 1.15, 1.35)
    } else if (nrow(dplyr::filter(tipmap_data, x.col == "prior")) == 1) {
      x.labels <-
        c(target_pop_lab, seq(from = 0, to = 1, by = .1), map_prior_lab)
      x.breaks <- c(-0.15, seq(from = 0, to = 1, by = .1), 1.15)
    }


    if ((tipmap_data$t.0.025[tipmap_data$x.at == 1.15] - null_effect) *
        (tipmap_data$t.0.975[tipmap_data$x.at == 1.15] - null_effect) <= 0) {
      message("95% credible interval for MAP prior includes null treatment effect")
    }

    if ((tipmap_data$t.0.025[tipmap_data$x.at == -0.15] - null_effect) *
        (tipmap_data$t.0.975[tipmap_data$x.at == -0.15] - null_effect) > 0) {
      message("Treatment effect in target population without borrowing")
    }

    # base plot
    tpaPlot <- ggplot2::ggplot(data = tipmap_data,
                               ggplot2::aes(x = x.at, y = t.est,
                                            colour = x.col)) +
      ggplot2::ggtitle(title) +
      # draw horizontal line for no treatment effect
      ggplot2::geom_hline(yintercept = null_effect) +
      # draw mean for target population, MAP prior and meta-analysis
      ggplot2::geom_point(data = dplyr::filter(tipmap_data, x.col %in% c("new.obs", "prior")),
                          colour = tipmap_darkblue) +
      # draw errorbars for target population, MAP prior and meta-analysis
      ggplot2::geom_errorbar(
        data = dplyr::filter(tipmap_data, x.col %in% c("new.obs", "prior")),
        ggplot2::aes(ymin = t.0.025, ymax = t.0.975),
        colour = tipmap_darkblue,
        width = .04
      )
    tipmap_data <-
      dplyr::filter(tipmap_data, x.col == "post")
    # draw line for combined treatment effect estimate
    tpaPlot <- tpaPlot +
      ggplot2::geom_line(data = tipmap_data, ggplot2::aes(y = t.est), colour = tipmap_darkblue) +
      # draw dotted line for combined 0.025-quantile of treatment effect
      ggplot2::geom_line(data = tipmap_data,
                         ggplot2::aes(
                           y = t.0.025,
                           linetype = "2.5%/97.5%",
                           colour = "2.5%/97.5%"
                         )) +
      # draw dashed line for combined 0.05-quantile of treatment effect
      ggplot2::geom_line(data = tipmap_data,
                         ggplot2::aes(
                           y = t.0.05,
                           linetype = "5%/95%",
                           colour = "5%/95%"
                         )) +
      # draw two-dashed line for combined 0.1-quantile of treatment effect
      ggplot2::geom_line(data = tipmap_data,
                         ggplot2::aes(
                           y = t.0.1,
                           linetype = "10%/90%",
                           colour = "10%/90%"
                         )) +
      # draw long-dashed line for combined 0.2-quantile of treatment effect
      ggplot2::geom_line(data = tipmap_data,
                         ggplot2::aes(
                           y = t.0.2,
                           linetype = "20%/80%",
                           colour = "20%/80%"
                         )) +
      # draw long-dashed line for combined 0.8-quantile of treatment effect
      ggplot2::geom_line(data = tipmap_data,
                         ggplot2::aes(
                           y = t.0.8,
                           linetype = "20%/80%",
                           colour = "20%/80%"
                         )) +
      # draw two-dashed line for combined 0.9-quantile of treatment effect
      ggplot2::geom_line(data = tipmap_data,
                         ggplot2::aes(
                           y = t.0.9,
                           linetype = "10%/90%",
                           colour = "10%/90%"
                         )) +
      # draw dashed line for combined 0.95-quantile of treatment effect
      ggplot2::geom_line(data = tipmap_data,
                         ggplot2::aes(
                           y = t.0.95,
                           linetype = "5%/95%",
                           colour = "5%/95%"
                         )) +
      # draw dotted line for combined 0.975-quantile of treatment effect
      ggplot2::geom_line(data = tipmap_data,
                         ggplot2::aes(
                           y = t.0.975,
                           linetype = "2.5%/97.5%",
                           colour = "2.5%/97.5%"
                         ))

    # for positive treatment effect in MAP prior

    if (abs((min(abs(
      unlist(tipmap_data$t.0.025)
    ), na.rm = TRUE) - null_effect)) <
    (abs(min(abs(
      unlist(tipmap_data$t.0.975)
    ), na.rm = TRUE) - null_effect))) {
      tippingPoint.025 <- get_tipping_points(tipmap_data,
                                          quantile = 0.025,
                                          null_effect = null_effect)
      tippingPoint.05 <- get_tipping_points(tipmap_data,
                                         quantile = 0.05,
                                         null_effect = null_effect)
      tippingPoint.1 <- get_tipping_points(tipmap_data,
                                        quantile = 0.1,
                                        null_effect = null_effect)
      tippingPoint.2 <- get_tipping_points(tipmap_data,
                                        quantile = 0.2,
                                        null_effect = null_effect)

      if (tippingPoint.025 != 0 & tippingPoint.025 != 1) {
        tpaPlot <- tpaPlot +
          ggplot2::geom_point(
            data = tipmap_data,
            ggplot2::aes(x = tippingPoint.025, y = t.0.025[x.at == tippingPoint.025]),
            colour = tipmap_lightred
          ) +
          ggplot2::geom_vline(
            ggplot2::aes(xintercept = tippingPoint.025),
            colour = tipmap_lightred,
            linetype = "dotted"
          )
      }
      if (tippingPoint.05 != 0 & tippingPoint.05 != 1) {
        tpaPlot <- tpaPlot +
          ggplot2::geom_point(
            data = tipmap_data,
            ggplot2::aes(x = tippingPoint.05, y = t.0.05[x.at == tippingPoint.05]),
            colour = tipmap_lightred
          ) +
          ggplot2::geom_vline(
            ggplot2::aes(xintercept = tippingPoint.05),
            colour = tipmap_lightred,
            linetype = "dotted"
          )
      }
      if (tippingPoint.1 != 0 & tippingPoint.1 != 1) {
        tpaPlot <- tpaPlot +
          ggplot2::geom_point(
            data = tipmap_data,
            ggplot2::aes(x = tippingPoint.1, y = t.0.1[x.at == tippingPoint.1]),
            colour = tipmap_lightred
          ) +
          ggplot2::geom_vline(
            ggplot2::aes(xintercept = tippingPoint.1),
            colour = tipmap_lightred,
            linetype = "dotted"
          )
      }
      if (tippingPoint.2 != 0 & tippingPoint.2 != 1) {
        tpaPlot <- tpaPlot +
          ggplot2::geom_point(
            data = tipmap_data,
            ggplot2::aes(x = tippingPoint.2,
                         y = t.0.2[x.at == tippingPoint.2]),
            colour = tipmap_lightred
          ) +
          ggplot2::geom_vline(
            ggplot2::aes(xintercept = tippingPoint.2),
            colour = tipmap_lightred,
            linetype = "dotted"
          )
      }
    } else {
      tippingPoint.975 <-
        get_tipping_points(tipmap_data,
                        quantile = 0.975,
                        null_effect = null_effect)
      tippingPoint.95 <-
        get_tipping_points(tipmap_data,
                        quantile = 0.95,
                        null_effect = null_effect)
      tippingPoint.9 <-
        get_tipping_points(tipmap_data,
                        quantile = 0.9,
                        null_effect = null_effect)
      tippingPoint.8 <-
        get_tipping_points(tipmap_data,
                        quantile = 0.8,
                        null_effect = null_effect)

      if (tippingPoint.975 != 0 & tippingPoint.975 != 1) {
        tpaPlot <- tpaPlot +
          ggplot2::geom_point(
            data = tipmap_data,
            ggplot2::aes(x = tippingPoint.975,
                         y = t.0.975[x.at == tippingPoint.975]),
            colour = tipmap_lightred
          ) +
          ggplot2::geom_vline(
            ggplot2::aes(xintercept = tippingPoint.975),
            colour = tipmap_lightred,
            linetype = "dotted"
          )
      }
      if (tippingPoint.95 != 0 & tippingPoint.95 != 1) {
        tpaPlot <- tpaPlot +
          ggplot2::geom_point(
            data = tipmap_data,
            ggplot2::aes(x = tippingPoint.95,
                         y = t.0.95[x.at == tippingPoint.95]),
            colour = tipmap_lightred
          ) +
          ggplot2::geom_vline(
            ggplot2::aes(xintercept = tippingPoint.95),
            colour = tipmap_lightred,
            linetype = "dotted"
          )
      }
      if (tippingPoint.9 != 0 & tippingPoint.9 != 1) {
        tpaPlot <- tpaPlot +
          ggplot2::geom_point(
            data = tipmap_data,
            ggplot2::aes(x = tippingPoint.9,
                         y = t.0.9[x.at == tippingPoint.9]),
            colour = tipmap_lightred
          ) +
          ggplot2::geom_vline(
            ggplot2::aes(xintercept = tippingPoint.9),
            colour = tipmap_lightred,
            linetype = "dotted"
          )
      }
      if (tippingPoint.8 != 0 & tippingPoint.8 != 1) {
        tpaPlot <- tpaPlot +
          ggplot2::geom_point(
            data = tipmap_data,
            ggplot2::aes(x = tippingPoint.8,
                         y = t.0.8[x.at == tippingPoint.8]),
            colour = tipmap_lightred
          ) +
          ggplot2::geom_vline(
            ggplot2::aes(xintercept = tippingPoint.8),
            colour = tipmap_lightred,
            linetype = "dotted"
          )
      }
    }
    # final twists and tweaks
    tpaPlot <- tpaPlot +
      ggplot2::scale_x_continuous(breaks = x.breaks, labels = x.labels) +
      ggplot2::theme_bw() +
      ggplot2::theme(
        panel.grid.minor.x = ggplot2::element_blank(),
        panel.grid.major.x = ggplot2::element_blank(),
        legend.position = "right"
      ) +
      ggplot2::xlab(x_lab) +
      ggplot2::ylab(y_lab) +
      ggplot2::scale_colour_manual(
        name = legend_title,
        values = c(
          "2.5%/97.5%" = tipmap_darkblue,
          "5%/95%" = tipmap_darkblue,
          "10%/90%" = tipmap_darkblue,
          "20%/80%" = tipmap_darkblue
        ),
        aesthetics = "colour"
      ) +
      ggplot2::scale_linetype_manual(
        name = legend_title,
        values = c(
          "2.5%/97.5%" = "dotted",
          "5%/95%" = "dashed",
          "10%/90%" = "twodash",
          "20%/80%" = "longdash"
        )
      )

    if (!(missing(y_range))) {
      tpaPlot <- tpaPlot +
        ggplot2::coord_cartesian(ylim = y_range)
    }
    if (!(missing(y_breaks))) {
      tpaPlot <- tpaPlot +
        ggplot2::scale_y_continuous(breaks = y_breaks)
    }

    return(tpaPlot)
  }

Try the tipmap package in your browser

Any scripts or data that you put into this service are public.

tipmap documentation built on Dec. 8, 2022, 1:13 a.m.