Nothing
#' MNIST dataset
#'
#' Prepares the MNIST dataset and optionally downloads it.
#'
#' @param root (string): Root directory of dataset where
#' `MNIST/processed/training.pt` and `MNIST/processed/test.pt` exist.
#' @param train (bool, optional): If True, creates dataset from
#' `training.pt`, otherwise from `test.pt`.
#' @param download (bool, optional): If true, downloads the dataset from the
#' internet and puts it in root directory. If dataset is already downloaded,
#' it is not downloaded again.
#' @param transform (callable, optional): A function/transform that takes in an
#' PIL image and returns a transformed version. E.g,
#' `transforms.RandomCrop`.
#' @param target_transform (callable, optional): A function/transform that takes
#' in the target and transforms it.
#'
#' @export
mnist_dataset <- dataset(
name = "mnist",
resources = list(
c("https://torch-cdn.mlverse.org/datasets/mnist/train-images-idx3-ubyte.gz", "f68b3c2dcbeaaa9fbdd348bbdeb94873"),
c("https://torch-cdn.mlverse.org/datasets/mnist/train-labels-idx1-ubyte.gz", "d53e105ee54ea40749a09fcbcd1e9432"),
c("https://torch-cdn.mlverse.org/datasets/mnist/t10k-images-idx3-ubyte.gz", "9fb629c4189551a2d022fa330f9573f3"),
c("https://torch-cdn.mlverse.org/datasets/mnist/t10k-labels-idx1-ubyte.gz", "ec29112dd5afa0611ce80d1b7f02629c")
),
training_file = 'training.rds',
test_file = 'test.rds',
classes = c('0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
'5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine'),
initialize = function(root, train = TRUE, transform = NULL, target_transform = NULL,
download = FALSE) {
self$root_path <- root
self$transform <- transform
self$target_transform <- target_transform
self$train <- train
if (download)
self$download()
if (!self$check_exists())
runtime_error("Dataset not found. You can use `download = TRUE` to download it.")
if (self$train)
data_file <- self$training_file
else
data_file <- self$test_file
data <- readRDS(file.path(self$processed_folder, data_file))
self$data <- data[[1]]
self$targets <- data[[2]] + 1L
},
download = function() {
if (self$check_exists())
return(NULL)
fs::dir_create(self$raw_folder)
fs::dir_create(self$processed_folder)
for (r in self$resources) {
filename <- tail(strsplit(r[1], "/")[[1]], 1)
destpath <- file.path(self$raw_folder, filename)
p <- download_and_cache(r[1], prefix = class(self)[1])
fs::file_copy(p, destpath)
if (!tools::md5sum(destpath) == r[2])
runtime_error("MD5 sums are not identical for file: {r[1]}.")
}
rlang::inform("Processing...")
training_set <- list(
read_sn3_pascalvincent(file.path(self$raw_folder, 'train-images-idx3-ubyte.gz')),
read_sn3_pascalvincent(file.path(self$raw_folder, 'train-labels-idx1-ubyte.gz'))
)
test_set <- list(
read_sn3_pascalvincent(file.path(self$raw_folder, 't10k-images-idx3-ubyte.gz')),
read_sn3_pascalvincent(file.path(self$raw_folder, 't10k-labels-idx1-ubyte.gz'))
)
saveRDS(training_set, file.path(self$processed_folder, self$training_file))
saveRDS(test_set, file.path(self$processed_folder, self$test_file))
rlang::inform("Done!")
},
check_exists = function() {
fs::file_exists(file.path(self$processed_folder, self$training_file)) &&
fs::file_exists(file.path(self$processed_folder, self$test_file))
},
.getitem = function(index) {
img <- self$data[index, ,]
target <- self$targets[index]
if (!is.null(self$transform))
img <- self$transform(img)
if (!is.null(self$target_transform))
target <- self$target_transform(target)
list(x = img, y = target)
},
.length = function() {
dim(self$data)[1]
},
active = list(
raw_folder = function() {
file.path(self$root_path, "mnist", "raw")
},
processed_folder = function() {
file.path(self$root_path, "mnist", "processed")
}
)
)
#' Kuzushiji-MNIST
#'
#' Prepares the [Kuzushiji-MNIST](https://github.com/rois-codh/kmnist) dataset
#' and optionally downloads it.
#'
#' @param root (string): Root directory of dataset where
#' `KMNIST/processed/training.pt` and `KMNIST/processed/test.pt` exist.
#' @param train (bool, optional): If TRUE, creates dataset from `training.pt`,
#' otherwise from `test.pt`.
#' @param download (bool, optional): If true, downloads the dataset from the
#' internet and puts it in root directory. If dataset is already downloaded,
#' it is not downloaded again.
#' @param transform (callable, optional): A function/transform that takes in an
#' PIL image and returns a transformed version. E.g, `transforms.RandomCrop`.
#' @param target_transform (callable, optional): A function/transform that takes
#' in the target and transforms it.
#'
#' @export
kmnist_dataset <- dataset(
name = "kminst_dataset",
inherit = mnist_dataset,
resources = list(
c("http://codh.rois.ac.jp/kmnist/dataset/kmnist/train-images-idx3-ubyte.gz", "bdb82020997e1d708af4cf47b453dcf7"),
c("http://codh.rois.ac.jp/kmnist/dataset/kmnist/train-labels-idx1-ubyte.gz", "e144d726b3acfaa3e44228e80efcd344"),
c("http://codh.rois.ac.jp/kmnist/dataset/kmnist/t10k-images-idx3-ubyte.gz", "5c965bf0a639b31b8f53240b1b52f4d7"),
c("http://codh.rois.ac.jp/kmnist/dataset/kmnist/t10k-labels-idx1-ubyte.gz", "7320c461ea6c1c855c0b718fb2a4b134")
),
classes = c('o', 'ki', 'su', 'tsu', 'na', 'ha', 'ma', 'ya', 're', 'wo')
)
read_sn3_pascalvincent <- function(path) {
x <- gzfile(path, open = "rb")
on.exit({close(x)})
magic <- readBin(x, endian = "big", what = integer(), n = 1)
n_dimensions <- magic %% 256
ty <- magic %/% 256
dim <- readBin(x, what = integer(), size = 4, endian = "big",
n = n_dimensions)
a <- readBin(
x,
what = "int", endian = "big", n = prod(dim),
size = 1, signed = FALSE
)
a <- array(a, dim = rev(dim))
a <- aperm(a, perm = rev(seq_along(dim)))
a
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.